共查询到20条相似文献,搜索用时 15 毫秒
1.
R Mattera A Yatani G E Kirsch R Graf K Okabe J Olate J Codina A M Brown L Birnbaumer 《The Journal of biological chemistry》1989,264(1):465-471
G proteins, particularly those sensitive to pertussis toxin, are difficult to separate biochemically, creating uncertainty in functional assignments. For this reason the cDNAs encoding G alpha i-3 and two of the G alpha s splice variants were expressed as fusion proteins in Escherichia coli using a T7 promoter-based expression system. These proteins were denoted r alpha i-3 and r alpha s (short and long) and accumulated in bacteria to as much as 5-10% of total cellular protein, of which 5-10% was soluble in lysates. Soluble r alpha subunits were tested for stimulation of K+ channel activity in inside-out atrial membrane patches and for reconstitution of cyc- adenylyl cyclase activity. r alpha i-3, activated either by guanosine 5'-(3-thio)triphosphate (GTP gamma S) or AlF-4, stimulated in a concentration-dependent manner single channel K+ currents in isolated atrial membrane patches of three species: guinea pigs, neonatal rats, and embryonic chick. In contrast, GTP gamma S-activated r alpha s did not. In agreement with a similar study by Graziano et al. (Graziano, M. P., Casey, P. J. and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381), both r alpha s forms reconstituted GTP gamma S-stimulated cyc- adenylyl cyclase activity, albeit at concentrations 50-100 times higher than those needed with native Gs. The concentrations of r alpha i-3 needed to stimulate the K+ channels were also higher than needed with native human erythrocyte Gk, in this case 30-50 times. Single K+ channel currents stimulated by r alpha i-3 were indistinguishable from those stimulated by the natural effector acetylcholine. Thus, bacterial expression of G alpha subunits provided the means to demonstrate unequivocally that Gi-3 has intrinsic Gk activity. 相似文献
2.
G protein subunit, alpha i-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6 总被引:7,自引:0,他引:7
H F Cantiello C R Patenaude D A Ausiello 《The Journal of biological chemistry》1989,264(35):20867-20870
In nonpolar excitable cells, guanine nucleotide regulatory (G) proteins have been shown to modulate ion channel activity in response to hormone receptor activation. In polarized epithelia, hormone receptor-G protein coupling involved in the generation of cAMP occurs on the basolateral membrane, while the physiological response to this messenger is a stimulation of ion channel activity at the apical membrane. In the present study we have utilized the patch-clamp technique to assess if the polarized renal epithelia, A6, have topologically distinct G proteins at their apical membrane capable of modulating Na+ channel activity. In excised inside-out patches of apical membranes, spontaneous Na+ channel activity (conductance 8-9 picosiemens) was inhibited by the addition of 0.1 mM guanosine 5'-O-(2-thio)diphosphate to the cytosolic membrane surface without an effect on single channel conductance. In contrast, the percent open time of spontaneous Na+ channels increased from 6 to 50% following the addition of 0.1 mM GTP. The addition of preactivated pertussis toxin (100 ng/ml) to the cytosolic bathing solution of the excised patch inhibited spontaneous Na+ channel activity within a minute by 85% from approximately 47 to 7% open time and reduced the percent open time for Na+ channel activity to zero after approximately 3 min. The addition of 0.1 mM guanosine 5'-(3-O-thio)triphosphate or the addition of 20 pM purified human alpha i-3 subunit to pertussis toxin-treated membrane patches restored Na+ channel activity from zero to 35% open time. As little as 0.2 pM alpha i-3 subunit was capable of restoring Na+ channel activity. These data provide evidence for a role of pertussis toxin-sensitive G proteins in the apical plasma membrane of renal epithelia distal to signal transduction pathways in the basolateral membrane of these cells. This raises the possibility of a topologically distinct signal transducing pathway co-localized with the Na+ channel. 相似文献
3.
D A Ausiello J L Stow H F Cantiello J B de Almeida D J Benos 《The Journal of biological chemistry》1992,267(7):4759-4765
We have recently demonstrated that the amiloride-sensitive Na+ channel in the apical membrane of the renal epithelial cell line, A6, is modulated by the alpha i-3 subunit of the Gi-3 protein. We also showed that a 700-kDa protein complex can be purified from the membranes of A6 epithelia which (a) can reconstitute the amiloride-sensitive Na+ influx in liposomes and planar bilayer membranes and (b) consists of six major protein bands observed on reducing sodium dodecyl sulfate-polyacrylamide gels with molecular masses ranging from 35 to 320 kDa. The present study was undertaken to determine if the alpha i-3 subunit was a member of this Na+ channel complex. G alpha i structure and function were identified by Western blotting with specific G alpha i subunit antibodies and Na+ channel antibodies, through ADP-ribosylation with pertussis toxin, and by immunocytochemical localization of the Na+ channel and G alpha i proteins. We demonstrate that two protein substrates are ADP-ribosylated in the 700-kDa complex in the presence of pertussis toxin and are specifically immunoprecipitated with an anti-Na+ channel polyclonal antibody. One of these substrates, a 41-kDa protein, was identified as the alpha i-3 subunit of the Gi-3 protein on Western blots with specific antibodies. Na+ channel antibodies do not recognize G alpha i-3 on Western blots of Golgi membranes which contain alpha i-3 but not Na+ channel proteins, nor do they immunoprecipitate alpha i-3 from solubilized Golgi membranes; however, alpha i-3 is coprecipitated as part of the Na+ channel complex from A6 cell membranes by polyclonal Na+ channel antibodies. Both alpha i-3 and the Na+ channel have been localized in A6 cells by confocal imaging and immunofluorescence with specific antibodies and are found to be in distinct but adjacent domains of the apical cell surface. In functional studies, alpha i-3, but not alpha i-2, stimulates Na+ channel activity. These data are therefore consistent with the localization of Na+ channel activity and modulatory alpha i-3 protein at the apical plasma membrane, which together represent a specific signal transduction pathway for ion channel regulation. 相似文献
4.
Complete cDNA sequence of a human stimulatory GTP-binding protein alpha subunit. 总被引:1,自引:0,他引:1 下载免费PDF全文
B A Harris 《Nucleic acids research》1988,16(8):3585
5.
FSH interacts with a guanine nucleotide-binding protein (G-protein)-coupled receptor, which in turn modulates signal transduction via the G-protein subunit alpha s. However, it is unknown whether FSH regulates alpha-subunit gene expression and whether G-protein alpha-subunit genes other than alpha s are modulated in FSH-stimulated signal transduction. Regulation of mRNA for alpha s and alpha i-2 was studied in primary cultures of rat Sertoli cells because these proteins are linked to the control of adenylyl cyclase. In addition, mRNA for alpha i-1 and alpha i-3 were quantified because these proteins are putatively linked to ion channels but have not been well characterized in the Sertoli cell. Northern blot analyses demonstrated that FSH induced a dose-dependent increase in steady state levels of alpha i-3 mRNA. In contrast, FSH caused a dose-dependent decrease in levels of alpha i-1 and alpha i-2 mRNA. No significant effect of FSH on alpha s mRNA levels was detectable. The time course of FSH effects showed a 75% decrease in alpha i-1 mRNA levels, a 50% decrease in alpha i-2 mRNA levels and a nearly 3-fold increase in levels of alpha i-3 mRNA between 4-6 h of treatment with 100 ng/ml FSH. Steady state levels of alpha i-1 and alpha i-2 mRNA returned to pretreatment levels after 10 h FSH treatment, while alpha i-3 mRNA returned to a new steady state level approximately 50% greater than the pretreatment level.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
7.
Reticulocyte lysates synthesize an active alpha subunit of the stimulatory G protein Gs 总被引:4,自引:0,他引:4
J Olate R Mattera J Codina L Birnbaumer 《The Journal of biological chemistry》1988,263(21):10394-10400
8.
G alpha i-3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways 总被引:6,自引:0,他引:6
H F Cantiello C R Patenaude J Codina L Birnbaumer D A Ausiello 《The Journal of biological chemistry》1990,265(35):21624-21628
Polarized renal epithelial cells have pertussis toxin-sensitive Gi proteins at their apical membrane capable of modulating Na+ channel activity (Cantiello, H.F., Patenaude, C.R., and Ausiello, D.A. (1989) J. Biol. Chem. 264, 20867-20870). In this study, the patch clamp technique was used to assess if this Gi-mediated regulation of Na+ channels is a component of a phospholipid signal transduction pathway. In excised inside-out patches of apical membranes of A6 cells, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated Na+ channel activity (percent open time and channel number) was inhibited by the phospholipase inhibitor mepacrine (50 microM), which had no effect on single channel conductance. In contrast, Na+ channel activity increased in a Ca2(+)-dependent manner following the addition of 100 nM mellitin to untreated or pertussis toxin-treated patches. Addition of 10 microM arachidonic acid in the presence of mepacrine increased Na+ channel activity. Both percent open time and Na+ channel number induced by GTP gamma S, the exogenous alpha i-3 subunit, or arachidonic acid were inhibited by the addition of the 5-lipoxygenase inhibitor nordihydroguaiaretic acid. Na+ channel activity was restored with the addition of leukotriene D4 (100 nM) or the parental leukotriene substrate 5-hydroperoxyeicosatetraenoic acid (10 microM). Thus, Gi activation of apical membrane epithelial Na+ channels is mediated through the regulation of phospholipase and lipoxygenase activities. This apically located signal transduction pathway may be sensitive to, or independent of, classical second messengers generated at the basolateral membrane and known to be responsible for modulation of Na+ channel activity in epithelia. 相似文献
9.
Expression of a G protein subunit, alpha i-1, in Balb/c 3T3 cells leads to agonist-specific changes in growth regulation 总被引:2,自引:0,他引:2
Z Cui M Zubiaur D B Bloch T Michel J G Seidman E J Neer 《The Journal of biological chemistry》1991,266(30):20276-20282
Cellular receptors for many hormones, neurotransmitters, and growth factors are coupled to intracellular effector enzymes or ion channels through a set of heterotrimeric G proteins. In order to determine whether isoforms of G protein alpha subunits contribute differentially to mitogenic responses, we introduced an alpha subunit isoform, alpha i-1, into Balb/c 3T3 cells that normally lack this subtype. Balb/c 3T3 cells transfected with a plasmid containing cDNA encoding alpha i-1 expressed the alpha i-1 protein as judged both by the appearance of immunoreactive alpha i-1 protein on Western blots and by two-dimensional analysis of the proteins [32P]ADP-ribosylated by pertussis toxin. The amount of alpha i-1 expressed is less than the amount of alpha subunits endogenously present in these cells. Expression of alpha i-1 in the transfected cells slightly blunts stimulation of adenylylcyclase by GTP, guanosine 5'-3-O-(thio)triphosphate, or forskolin, but has no major effect on the ability of thrombin to inhibit the enzyme. In contrast, the expression of alpha i-1 has significant effects on cell growth and on the mitogenic response to thrombin. The alpha i-1-transfected cells have a doubling time that is twice as long as control cells transfected with the same plasmid without a cDNA insert. Despite their slower growth, thymidine incorporation in response to thrombin is greater in transfected than in control cells. Thrombin-stimulated DNA synthesis is sensitive to inhibition by pertussis toxin and is 5-fold more sensitive to inhibition by pertussis toxin in transfected cells than in control cells. The changes are receptor-specific since the mitogenic response to platelet-derived growth factor is indistinguishable between control and transfected cells. These studies suggest that the alpha i subunit composition of the cell may have profound effects on its growth and its response to stimulation through a specific cell surface receptor. 相似文献
10.
Hormonal regulation of pituitary GH3 cell K+ channels by Gk is mediated by its alpha-subunit 总被引:3,自引:0,他引:3
The resolved alpha-GTP gamma S (alpha*) and beta gamma-subunits of human erythrocyte Gk, the stimulatory regulatory component of hormone-responsive K+ channels, were tested for their potential stimulatory activities on the K+ channel of the endocrine GH3 cell. Concentrations as low as 0.5 pM alpha k* consistently activated K+ channels in isolated membrane patches, and saturating effects were obtained with 50 pM alpha k*. In contrast 2000-4000 pM beta gamma was without effect. We conclude that Gk acts on K+ channels through its alpha-subunit in a manner akin to that of Gs acting on adenylyl cyclase and transducin acting on cGMP-specific phosphodiesterase of photo-receptor cells. 相似文献
11.
Kawano T Chen L Watanabe SY Yamauchi J Kaziro Y Nakajima Y Nakajima S Itoh H 《FEBS letters》1999,452(3):355-359
Arachidonic acid (AA) is generated via Rac-mediated phospholipase A2 (PLA2) activation in response to growth factors and cytokines and is implicated in cell growth and gene expression. In this study, we show that AA activates the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in a time- and dose-dependent manner. Indomethacin and nordihydroguaiaretic acid, potent inhibitors of cyclooxygenase and lipoxygenase, respectively, did not exert inhibitory effects on AA-induced SAPK/JNK activation, thereby indicating that AA itself could activate SAPK/JNK. As Rac mediates SAPK/JNK activation in response to a variety of stressful stimuli, we examined whether the activation of SAPK/JNK by AA is mediated by Rac1. We observed that AA-induced SAPK/JNK activation was significantly inhibited in Rat2-Rac1N17 dominant-negative mutant cells. Furthermore, treatment of AA induced membrane ruffling and production of hydrogen peroxide, which could be prevented by Rac1N17. These results suggest that AA acts as an upstream signal molecule of Rac, whose activation leads to SAPK/JNK activation, membrane ruffling and hydrogen peroxide production. 相似文献
12.
Human testis cDNA for the regulatory subunit RII alpha of cAMP-dependent protein kinase encodes an alternate amino-terminal region 总被引:3,自引:0,他引:3
Phosphorylations catalyzed by cAMP-dependent protein kinase are essential for sperm motility, and type II cAMP-dependent protein kinase in mature sperm has been shown to be firmly bound to the flagellum via the regulatory subunit, RII. The present study documents high-levelled expression of a human, testis-specific RII alpha mRNA (2.0 kb) analogous to the rat mRNA which is induced in haploid germ cells [(1988) FEBS Lett. 229, 391-394]. We report the molecular cloning of a full-length human cDNA corresponding to this unique testis mRNA, and the presence of an alternative amino-terminal region (amino acids 45-75) of the predicted RII alpha protein (404 amino acids) compared with the previously published mouse and rat sequences. However, this alternate region is also shown to be present in RII alpha mRNA (7.0 kb) of human somatic cells. Our data indicate the divergent amino-terminal sequence to be due to species differences, suggesting an active evolutionary pressure on this particular region, which could be involved in subcellular attachment of RII alpha and thereby localization of kinase activity to certain targets within the cell. 相似文献
13.
In neuronal and atrial tissue, G protein-gated inwardly rectifying K(+) channels (Kir3.x family) are responsible for mediating inhibitory postsynaptic potentials and slowing the heart rate. They are activated by Gbetagamma dimers released in response to the stimulation of receptors coupled to inhibitory G proteins of the G(i/o) family but not receptors coupled to the stimulatory G protein G(s). We have used biochemical, electrophysiological, and molecular biology techniques to examine this specificity of channel activation. In this study we have succeeded in reconstituting such specificity in an heterologous expression system stably expressing a cloned counterpart of the neuronal channel (Kir3.1 and Kir3.2A heteromultimers). The use of pertussis toxin-resistant G protein alpha subunits and chimeras between G(i1) and G(s) indicate a central role for the G protein alpha subunits in determining receptor specificity of coupling to, but not activation of, G protein-gated inwardly rectifying K(+) channels. 相似文献
14.
A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells 总被引:19,自引:24,他引:19 下载免费PDF全文
J L Stow J B de Almeida N Narula E J Holtzman L Ercolani D A Ausiello 《The Journal of cell biology》1991,114(6):1113-1124
A heterotrimeric G alpha i subunit, alpha i-3, is localized on Golgi membranes in LLC-PK1 and NRK epithelial cells where it colocalizes with mannosidase II by immunofluorescence. The alpha i-3 was found to be localized on the cytoplasmic face of Golgi cisternae and it was distributed across the whole Golgi stack. The alpha i-3 subunit is found on isolated rat liver Golgi membranes by Western blotting and G alpha i-3 on the Golgi apparatus is ADP ribosylated by pertussis toxin. LLC-PK1 cells were stably transfected with G alpha i-3 on an MT-1, inducible promoter in order to overexpress alpha i-3 on Golgi membranes. The intracellular processing and constitutive secretion of the basement membrane heparan sulfate proteoglycan (HSPG) was measured in LLC-PK1 cells. Overexpression of alpha i-3 on Golgi membranes in transfected cells retarded the secretion of HSPG and accumulated precursors in the medial-trans-Golgi. This effect was reversed by treatment of cells with pertussis toxin which results in ADP-ribosylation and functional uncoupling of G alpha i-3 on Golgi membranes. These results provide evidence for a novel role for the pertussis toxin sensitive G alpha i-3 protein in Golgi trafficking of a constitutively secreted protein in epithelial cells. 相似文献
15.
Albsoul-Younes AM Sternweis PM Zhao P Nakata H Nakajima S Nakajima Y Kozasa T 《The Journal of biological chemistry》2001,276(16):12712-12717
G protein-coupled inward rectifier K(+) channels (GIRK channels) are activated directly by the G protein betagamma subunit. The crystal structure of the G protein betagamma subunits reveals that the beta subunit consists of an N-terminal alpha helix followed by a symmetrical seven-bladed propeller structure. Each blade is made up of four antiparallel beta strands. The top surface of the propeller structure interacts with the Galpha subunit. The outer surface of the betagamma torus is largely made from outer beta strands of the propeller. We analyzed the interaction between the beta subunit and brain GIRK channels by mutating the outer surface of the betagamma torus. Mutants of the outer surface of the beta(1) subunit were generated by replacing the sequences at the outer beta strands of each blade with corresponding sequences of the yeast beta subunit, STE4. The mutant beta(1)gamma(2) subunits were expressed in and purified from Sf9 cells. They were applied to inside-out patches of cultured locus coeruleus neurons. The wild type beta(1)gamma(2) induced robust GIRK channel activity with an EC(50) of about 4 nm. Among the eight outer surface mutants tested, blade 1 and blade 2 mutants (D1 and CD2) were far less active than the wild type in stimulating GIRK channels. However, the ability of D1 and CD2 to regulate type I and type II adenylyl cyclases was not very different from that of the wild type beta(1)gamma(2). As to the activities to stimulate phospholipase Cbeta(2), D1 was more potent and CD2 was less potent than the wild type beta(1)gamma(2). Additionally we tested four beta(1) mutants in which mutated residues are located in the top Galpha/beta interacting surface. Among them, mutant W332A showed far less ability than the wild type to activate GIRK channels. These results suggest that the outer surface of blade 1 and blade 2 of the beta subunit might specifically interact with GIRK and that the beta subunit interacts with GIRK both over the outer surface and over the top Galpha interacting surface. 相似文献
16.
17.
Zeilinger S Reithner B Scala V Peissl I Lorito M Mach RL 《Applied and environmental microbiology》2005,71(3):1591-1597
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein alpha subunit that belongs to subgroup III of fungal Galpha proteins. Deltatga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression. 相似文献
18.
Arthur M. Brown Atsuko Yatani Glenn Kirsch Kouji Okabe Antonius M. J. VanDongen Lutz Birnbaumer 《Journal of bioenergetics and biomembranes》1991,23(4):499-507
Heterotrimeic G proteins are thought to couple receptors to ionic channels via cytoplasmic mediators such as cGMP in the case of retinal rods, cAMP in the case of olfactory cells, and the cAMP cascade in the case of cardiac myocytes. G protein-mediated second messenger effects on K+ channels are dealt with elsewhere in this series. Recently, membrane-delimited pathways have been uncovered and an hypothesis proposed in which the subunits of G proteins directly couple receptors to ionic channels, particularly K+ channels. While direct coupling has not been proven, the membrane-delimited nature has been established for specific G proteins and their specific K+ channel effectors. 相似文献
19.
Antisera were generated against synthetic peptides that correspond to amino acid sequences deduced from a cDNA (designated beta 2) that encodes a second form of the beta subunit of guanine nucleotide-binding regulatory proteins (G proteins). The specificity of interactions of these antisera with purified G protein beta subunits indicates that the beta 2 cDNA encodes the beta 35 form of this polypeptide. This hypothesis is confirmed by the use of these antisera to detect expression of the beta 2 cDNA in COS-m6 cells. 相似文献