共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton (Gossypium hirsutum L., var. Coker 312) hypocotyl explants were transformed with three strains of Agrobacterium tumefaciens, LBA4404, EHA101 and C58, each harboring the recombinant binary vector pBI121 containing the chi gene insert and neomycin phosphotransferase (nptII) gene, as selectable marker. Inoculated tissue sections were placed onto cotton co-cultivation medium. Transformed calli were selected on MS medium containing 50 mg l−1 kanamycin and 200 mg l−1 cepotaxime. Putative calli were subsequently regenerated into cotton plantlets expressing both the kanamycin resistance gene and βglucuronidase (gus) as a reporter gene. Polymerase chain reaction was used to confirm the integration of chi and nptII transgenes in the T1 plants genome. Integration of chi gene into the genome of putative transgenic was further confirmed by Southern blot analysis. ‘Western’ immunoblot analysis of leaves isolated from T0 transformants and progeny plants (T1) revealed the presence of an immunoreactive band with MW of approximately 31 kDa in transgenic cotton lines using anti-chitinase-I polyclonal anti-serum. Untransformed control and one transgenic line did not show such an immunoreactive band. Chitinase specific activity in leaf tissues of transgenic lines was several folds greater than that of untransformed cotton. Crude leaf extracts from transgenic lines showed in vitro inhibitory activity against Verticillium dahliae.Transgenic plants currently growing in a greenhouse and will be bioassayed for improved resistance against V. dahlia the causal against of verticilliosis in cotton. 相似文献
2.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at
27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L
and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic
embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR
amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus
far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants. 相似文献
3.
Byoung-Kyu?Lee Seung-Hee?Yu Yul-Ho?Kim Byung-Ohg?Ahn Han-Sun?Hur Sang-Chul?Lee Zhanyuan?Zhang Jang-Yong?Lee
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants. 相似文献
4.
Fei-Fei Li Shen-Jie Wu Tian-Zi Chen Jie Zhang Hai-Hai Wang Wang-Zhen Guo Tian-Zhen Zhang 《Plant Cell, Tissue and Organ Culture》2009,97(3):225-235
Two cotton genotypes, Simian 3 (SM 3) and WC, were co-transformed using a mixture of four Agrobacterium tumefaciens cultures of strain LBA4404, each carrying a plasmid harboring the following genes, Bt + sck (for Bacillus thuringenesis protein and modified Cowpea trypsin inhibitor), bar (for glufosinate), keratin, and fibroin. The frequency of callus induction, embryogenesis, and plant regeneration were notably different between the two genotypes.
However, there were no differences between the two genotypes for number of plantlets carrying multiple gene copies of different
gene combinations as well as transformation frequency for different gene combinations. PCR analysis indicated that more than
80% of plantlets carried the nptII gene for kanamycin resistance. Overall, the co-transformation frequency of two or more genes was about 35%. Southern blot
analysis confirmed integration of target genes into the cotton genome, and the number of copies of the transgene(s) varied
from one to four. Multiple transgene expression was confirmed by RT-PCR analysis in some transgenic lines. Further analysis
of T1 plants demonstrated that multiple transgenes were inherited and expressed in progenies.
Fei-Fei Li and Shen-Jie Wu are joint first authors. 相似文献
5.
<Emphasis Type="Italic">Agrobacterium</Emphasis>-mediated genetic transformation of <Emphasis Type="Italic">Perilla frutescens</Emphasis> 总被引:3,自引:0,他引:3
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies. 相似文献
6.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars.
It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation
duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency
as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based
on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for
maximum transgenic production are required for each individual cultivar. 相似文献
7.
Hisano H Kimoto Y Hayakawa H Takeichi J Domae T Hashimoto R Abe J Asano S Kanazawa A Shimamoto Y 《Plant cell reports》2004,22(12):910-918
We have developed a new procedure for Agrobacterium-mediated transformation of plants in the genus Beta using shoot-base as the material for Agrobacterium infection. The frequency of regeneration from shoot bases was analyzed in seven accessions of sugarbeet (Beta vulgaris) and two accessions of B. maritima to select materials suitable for obtaining transformed plants. The frequency of transformation of the chosen accessions using Agrobacterium strain LBA4404 and selection on 150-mg/l kanamycin was found to be higher than that in previously published methods. Genomic DNA analysis and -glucuronidase reporter assays showed that the transgene was inherited and expressed in subsequent generations. In our method, shoot bases are prepared by a simple procedure, and transformation does not involve the callus phase, thus minimizing the occurrence of somaclonal variations. 相似文献
8.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis. 相似文献
9.
Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745
and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of
the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies
and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled
by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin).
Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient
protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting
detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants
to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid. 相似文献
10.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits
within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated
with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut
into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid
(NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated
after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant
genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed
in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment
of this transformation system is invaluable for investigating fruit-tree-specific phenomena. 相似文献
11.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood
(Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration
is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants
with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the
selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during
the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable
marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol,
transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events
with modest effort. 相似文献
12.
An efficient and reproducible transformation method of sonication- assisted Agrobacterium-mediated transformation (SAAT) was developed for chickpea (Cicer arietinum L.). Agrobacterium tumefaciens (LBA4404) harboring pCAMBIA1305.2 was used to transform decapitated embryo explants of two cultivars of chickpeas. By using
a series of co-cultivation, callus induction, shoot initiation and root inducing media, a large number of transgenic plants
were recovered. Transient expressions of GUS gene were detected by X-Gluc histochemical assay in transformed tissues. DNA analysis of T0 and T1 plants by PCR and Southern
hybridization confirmed the integration of transgenes in initial and next generation transformants in different transgenic
lines. The transformation efficiency was more than two times higher in SAAT treatment than simple Agrobacterium without sonication. 相似文献
13.
Qi Zhu Fengtao Wu Feng Ding Dong Ye Yongqin Chen Yi Li Yang Zhifan 《Plant Cell, Tissue and Organ Culture》2009,96(3):317-324
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important
steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and
female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive
to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation
medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three
days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for
formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh
selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of
the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to
produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated
from initial infected callus explants. 相似文献
14.
Y. Y. Wu Q. J. Chen X. H. Cui H. Chen J. Chen X. C. Wang 《Russian Journal of Plant Physiology》2007,54(4):524-529
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were
tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest
callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine.
Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized
regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin,
a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques,
we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results
indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and
transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants.
Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596.
The text was submitted by the authors in English. 相似文献
15.
Hai Ping Hong Hongyi Zhang Paula Olhoft Steve Hill Hunt Wiley Effie Toren Helke Hillebrand Todd Jones Ming Cheng 《In vitro cellular & developmental biology. Plant》2007,43(6):558-568
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes
as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced
on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with
various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect
on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a
low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside,
and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction
medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected
calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been
regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including
leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy
number ranging from 1–5 copies. 相似文献
16.
London plane tree (Platanus acerifolia Willd.) is an important tree in urban landscaping but it suffers from a number of negative traits which genetic engineering
could be used to address. As with many woody species, P. acerifolia has appeared recalcitrant to genetic transformation. However, the recent development of a method for regenerating shoots
from P. acerifolia leaf explants suggests that such material could be a target for gene-transfer. Using an Agrobacterium tumefaciens strain in which the T-DNA carries the histochemically detected reporter gene β-glucuronidase (GUS), we have followed the
transfer of genes from Agrobacterium to leaf explants of Platanus acerifolia. Using this system, we have identified a set of inoculation and co-cultivation conditions (notably: the pre-treatment of
leaf explants with 0.4 M mannitol, an inoculation period of 10 min, a bacterial OD600 of 0.8–1.0 and a co-cultivation period of 5 days) that permit a good frequency and reliability of transient gene-transfer.
Optimum levels of antibiotics for bacterial elimination and kanamycin-resistant shoot regeneration were also established.
By applying these parameters, we recovered eight independent stably transformed shoots that were kanamycin-resistant and contained
the nptII T-DNA gene, as confirmed by PCR analysis. Furthermore, Southern blot analysis confirmed that, in at least five of these lines,
the transgene was associated with high molecular weight DNA, so indicating integration into the plant genome. 相似文献
17.
18.
Production of transgenic lily plants by<Emphasis Type="Italic"> Agrobacterium</Emphasis>-mediated transformation 总被引:1,自引:0,他引:1
A system for the production of transgenic plants was developed for the Oriental hybrid lily, Lilium cv. Acapulco, by Agrobacterium-mediated genetic transformation. Filament-derived calli were co-cultivated with A. tumefaciens strain EHA101/pIG121Hm, which harbored a binary vector carrying the neomycin phosphotransferase II, hygromycin phosphotransferase, and intron-containing -glucuronidase genes in the T-DNA region. Six hygromycin-resistant (Hygr) culture lines were obtained from 200 calli by scratching them with sandpaper prior to inoculation and using NH4NO3-free medium for co-cultivation and a hygromycin-containing regeneration medium for selection. Hygr culture lines regenerated shoots, which developed into plantlets following transfer to a plant growth regulator-free medium. All of these plantlets were verified to be transgenic by GUS histochemical assay and inverse PCR analysis.Abbreviations AS Acetosyringone (3,5-dimethoxy-4-hydroxy-acetophenone) - BA Benzyladenine - CaMV Cauliflower mosaic virus - GUS -Glucuronidase - HPT Hygromycin phosphotransferase - Hygr Hygromycin-resistant - NOS Nopaline synthase - NPTII Neomycin phosphotransferase II - PGR Plant growth regulator - PIC Picloram (4-amino-3,5,6-trichloropicolinic acid)Communicated by H. Ebinuma 相似文献
19.
An efficient system of gene transformation is necessary for soybean [Glycine max (L.) Merrill] functional genomics and gene modification by using RNA interference (RNAi) technology. To establish such system, we improved the conditions of tissue culture and transformation for increasing the frequency of adventitious shoots and decreasing the browning and necrosis of hypocotyls. Adding N(6)-benzylaminopurine (BAP) and silver nitrate in culture medium enhanced the shoot formation on hypocotyls. BAP increased the frequency of the hypocotyls containing adventitious shoots, while silver nitrate increased the number of shoots on the hypocotyls. As a result, the number of adventitious shoots on hypocotyls cultured in medium containing both BAP and silver nitrate was 5-fold higher than the controls. Adding antioxidants in co-cultivation medium resulted in a significant decrease in occurrence of browning and necrosis of hypocotyls and increase in levels of beta-Glucuronidase (GUS) gene expression. Histochemical assays showed that the apical meristem of hypocotyls was the "target tissue" for Agrobacterium tumefaciens transformation of soybean. Gene silencing of functional gene by using RNAi technology was carried out under above conditions. A silencing construct containing an inverted-repeat fragment of the GmFAD2 gene was introduced into soybean by using the A. tumefaciens-mediated transformation. Several lines with high oleic acid were obtained, in which mean oleic acid content ranged from 71.5 to 81.9%. Our study demonstrates that this transgenic approach could be efficiently used to improve soybean quality and productivity through functional genomics. 相似文献
20.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances
in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without
a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation
efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced
Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation
process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance
the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12%
overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature
embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic
engineering studies including transformation-based functional genomics. 相似文献