首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Michael Hickman 《Ecography》1978,1(4):337-350
Cooking Lake (113°02′W, 53°26′N), a well-mixed, shallow (mean depth (1.59 m), eutrophic lake in Alberta, Canada, is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop with increasing depth. Standing crop and primary productivity are low during the winter but pronounced spring and summer maxima occur. Mean yearly areal standing crop (ΔB) and primary productivity (ΔA) were 212.4 mg m?2 chlorophyll a and 301.8 mg C h?1 m?2 respectively. Annual productivity was estimated at 1322 g C m?2. The mean increase in the extinction coefficient (?) per unit increase in standing crop (B) was 0.03 In units m?1. High non-algal light attenuation (?q) occurred avenging 41 which prevented the ratio B/? from attaining more than 65% of the theoretical maximum except once when algal self-shading occurred. Close correlations existed between B (mg m?3 chlorophyll a) and A max (mg h?1 m?3) ΔA and ΔB, ΔA and B, Amax, and Amax/?, and ΔA and Io′, (W m?2). The depth of the euphotic zone (Zeu) varied between 0.5 and 1 25 m; the average relationship between zeu and E was Zeu= 3.74/?, and the mean standing Crop found in the euphotic zone represented 55.2% of the theoretical maximum, The high ?q, values made the model of Tailing (1957) inapplicable to Cooking Lake. The Q10 value for the lake was 2.2. The maximum rate of photosynthesis per unit of population per h. Ømax, (mg C sag chlorophyll a?1 h?1) was more closely related to temperature than irradiance and ma depressed by pH values greater than 9.1. Growth of the phytoplankton was not nutrient limited: instead irradiance and temperature were more important. Indirect evidence that free CO2 limited photosynthetic rates, is provided by the Ømax: pH relationship.  相似文献   

2.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

3.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

4.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

5.
6.
Three photosynthetic parameters of 7 species of marine diatoms were studied using Na214CO3 at 5–8 C using log phase axenic cultures. The cell volumes of the different species varied from 70 μm3 to 40 × 105μm3. The present experiment is consistent with the interpretation that the initial slope α (mg C · [mg chl a]?1· h?1· w?1· m2) of photosynthesis vs. light curves is controlled by self-shading of chlorophyll a in the cell. Pm, the rate of photosynthesis at light saturation (mg C · [mg cell, C]?1· h?1) and R, the intercept at zero light intensity (mg C · [mg cell C]?1· H?1) are both dependent on the ratio of surface area to volume of cell.  相似文献   

7.
Current culture methods based on monocultures under phototrophic regimes are prone to contamination, predation, and collapse. Native cultures of multiple species are adapted to the local conditions and are more robust against contamination and predation. Growth, lipid and biomass productivity of a Louisiana native coculture of microalgae (Chlorella vulgaris) and cyanobacteria (Leptolyngbya sp.) in heterotrophic and mixotrophic regimes were investigated. Dextrose and sodium acetate at C:N ratios of 15:1 and 30:1 under heterotrophic (dark) and mixotrophic (400 μmol m?2 s?1) regimes were compared with autotrophic controls. The carbon source and C:N ratio impacted growth and biomass productivity. Mixotrophic cultures with sodium acetate (C:N 15:1) resulted in the highest mean biomass productivity (156 g m?3 d?1) and neutral lipid productivity (24.07 g m?3 d?1). The maximum net specific growth rate (U) was higher (0.97 d?1) in mixotrophic cultures with dextrose (C:N 15:1) but could not be sustained resulting in lower total biomass than in mixotrophic cultures with acetate (C:N 15:1), with a U of 0.67 d?1. The ability of the Louisiana coculture to use organic carbon for biomass and lipid production makes it a viable feedstock for biofuels and bioproducts.  相似文献   

8.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

9.
Urban development, primarily in the Atlanta, Georgia, metropolitan area, caused a significant rise in the volume of treated wastewater discharged into the Chattahoochee River from 1976 to 1985. West Point Lake, 109 km downstream from Atlanta, responded to the increased nutrient loading with an increase in mean annual phytoplankton primary productivity of from 550 mg C m–2 day–1 in 1976 to 1580 mg C m–2 day–1 in 1985, a move from mesotrophic to eutrophic status. Monthly water quality measurements in the lake headwaters failed to detect the trend of increasing enrichment. Phytoplankton chlorophyll a concentrations did not indicate a trend of increasing algal biomass. Increased productivity was caused by improved photosynthetic efficiency that resulted from a shift in the size distribution of algae comprising the phytoplankton community. Larger centric diatoms with relatively slow turnover rates that were dominant during the early years (1976–1980) of impoundment were replaced by smaller green and blue-green algal taxa with faster turnover rates during later years (1981–1985).  相似文献   

10.
This study explores adaptive strategies of epiphytic bryophytes in the understorey by investigating the photosynthetic characteristics, pigment concentrations and nutrient stoichiometry, as well as other functional traits of three trunk-dwelling bryophytes in a subtropical montane cloud forest in SW China. The results showed that their light-saturated net photosynthetic rate (Anmax?L), light saturation point (Isat), light compensation point (Ic) and dark respiration rate (Rd) were ca 0.55, 106.72, 4.17 and 0.25?μmol?m?2?s?1, respectively. Furthermore, the samples demonstrated photosynthetic down-regulation under high irradiance. These photosynthetic characteristics can be explained by higher total chlorophyll concentrations, specific leaf area, chlorophyll per unit leaf N (Chl/N), lower ratio of chlorophyll a to chlorophyll b (Chl a/b) and photosynthetic nitrogen-use efficiency. We suggest that the bryophytes adapted to the shaded understorey microhabitats through a series of correlations and trade-offs between functional traits.  相似文献   

11.
Primary production rates, chlorophyll and phytoplankton biovolume were measured monthly from April 2003 to November 2004 in Lake Tana, a large tropical lake in the highlands of Ethiopia. The lake is characterised by low nutrient concentrations, and a low water transparency due to high silt load of the inflowing rivers during the rainy seasons (May–November) and daily resuspension of sediments in the inshore zone. The mean chlorophyll-a concentrations varied seasonally and ranged from 2.6 mg m−3 to 8.5 mg m−3 (mean: 4.5 mg m−3) in the offshore zone. Primary production was measured using the light–dark bottles technique. We incubated only at three depths, i.e. 0.6, 1.2 and 1.8 m. Therefore, we may have missed a substantial part of the depth production profile and probably also frequently missed P max. Gross primary production in the openwater averaged 2.43 g O2 m−2 d−1 and ranged between 0.03 g O2 m−2 d−1 and 10.2 g O2 m−2 d−1; production was significantly higher in the inshore zone. The highest production rates were observed in the post-rainy season (Oct–Nov), which coincided with a bloom of Microcystis and higher chlorophyll levels. This seasonal high production is probably caused by a relatively high nutrient availability in combination with favourable light conditions. The gross primary production rates of L. Tana are among the lowest compared with other tropical lakes. This will be partly the result of our underestimation of gross primary production by often missing P max. Another cause is the oligotrophic nature of the lake in combination with its relatively low water transparency. The gross primary production per unit chlorophyll in the openwater zone was in the same range as in 30 other tropical lakes and reservoirs. The higher primary production in the inshore zone is probably the result of the daily water column mixing (Z mixZ t) in this area, enhancing nutrient recycling. A large proportion of the annual primary production is realised in one of the four seasons only. This productive post-rainy season is relatively short (2 months) and therefore efficiency of transfer of matter between the first and second trophic level of the Lake ecosystem will be poor.  相似文献   

12.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

13.
SUMMARY. 1. Periphyton chlorophyll a and ash free dry weight (AFDW) were monitored in nine rivers to examine the relative importance of flows and nutrients for regulating periphyton biomass in gravel bed rivers. 2. Mean annual flows in the rivers ranged from 0.94 to 169 m3 s?1, mean dissolved reactive phophorus (DRP) from 1.3 to 68 μ g 1?1, periphytic chlorophyll a from 4.6 to 73 mg m ?2. and AFDW from 2.8 to 16 g m?2. 3. For eight of the nine rivers NH4-N. DRP, total Kjeldahl nitrogen, total phosphorus and total suspended solids were correlated (P<0.01) with flow, and for seven rivers conductivity was inversely correlated (P<0.05) with flow. 4. There was a hyperbolic relationship between flows and biomass, with chlorophyll a >100 mg m ?2 and AFDW >20 g m?2 occurring most frequently in flows of <20 m3 s?1. 5. Floods prevented the development of medium term (i.e. up to 2 months) maxima in biomass in five of the rivers, but maxima occurred over summer-autumn and winter-spring in the three rivers where floods were absent. 6. Chlorophyll a biomass was more resistant to flooding than AFDW. Only 5993 of the forty-six recorded floods caused chlorophyll a scouring, whereas 74% of the floods caused AFDW scouring. The efficiency of scour was more influenced by the pre-flood biomass than the magnitude of the event. 7. Biomass maxima were significantly correlated (P<0.01) with mean DRP concentration during the accrual period. Overall, up to 53% of the mean annual biomass difference between rivers was explained by the mean annual DRP concentrations. However, the high correlations between nutrient concentrations and flow indicated that the nutrient data were also carrying hydrological information and that simple causal relationships between nutrients and biomass are difficult to establish in rivers. 8. It is concluded that hydrological factors contribute at least equally with nutrients to the differences in periphyton biomass between the gravel-bed study rivers. They combined to explain up to 63.3% of the variance in biomass, compared with 57.6% for nutrients. It is recommended that periphyton data from gravel-bed rivers should always be viewed within the context of the flow history of the site, and not just as a function of nutrient concentrations.  相似文献   

14.
1. Compared to lakes and streams, we know relatively little about the factors that regulate algae in freshwater wetlands. This discrepancy is particularly acute in boreal regions, where wetlands are abundant and processes related to climate change (i.e. increased permafrost collapse and soil weathering) are expected to increase nutrient inputs into aquatic systems. To investigate how accelerated nutrient inputs might affect algal structure and function in northern boreal wetlands, we added nitrogen, phosphorus and silica to mesocosms in an oligotrophic marsh in interior Alaska. 2. We conducted two in situ mesocosm enrichment experiments during consecutive summer growing seasons, each lasting 24 days. In 2007, we investigated the effects of +N, +P, +Si and +N+P+Si enrichment on benthic algal biomass (chlorophyll‐a, ash‐free dry mass, biovolume), chemistry (N : P ratio) and community composition. In 2008, we expanded our first experiment to investigate the effects +N+P, +N+Si, +P+Si and +N+P+Si on the same algal parameters as well as productivity (mg C m?2 h?1). 3. In both experiments, we measured water‐column dissolved organic carbon (DOC) inside treatment enclosures and related changes in DOC to standing algal biomass. 4. Benthic algal accrual did not increase following 24 days of enrichment with any nutrient alone or with P and Si together (+P+Si), but increased significantly with the addition of N in any combination with P and Si (+N+P, +N+Si, +N+P+Si). 5. Algal productivity (20 mg C m?2 h?1) increased between three‐ and seven‐fold (57–127 mg C m?2 h?1) with the addition of N in combination with any other nutrient (+N+P, +N+Si, +N+P+Si). Water‐column DOC concentration was significantly higher inside N‐combination treatments compared to the control during each season, and DOC increased linearly with benthic algal biomass in 2007 (r2 = 0.89, P < 0.0001) and 2008 (r2 = 0.74, P < 0.0001). 6. Taxonomic composition of the wetland algal community responded most strongly to N‐combination treatments in both seasons. In 2007, there was a significant shift from Euglena and Mougeotia in the control treatment to Chroococcus and Gloeocystis with +N+P+Si enrichment, and in 2008, a Mougeotia‐dominated community was replaced by Gloeocystis in the +N+P treatment and by Nitzschia in +N+Si and +N+P+Si treatments. 7. Together, these data provide several lines of evidence for co‐limitation, and the central importance of N as a co‐limiting nutrient for the wetland algal community. Changes in algal dynamics with increased nutrient concentrations could have important implications for wetland food webs and suggest that algae may provide a functional link between increasing nutrient inputs and altered wetland carbon cycling in this region.  相似文献   

15.
Phaeodactylum tricornutum is a widely studied diatom and has been proposed as a source of oil and polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). Recent studies indicate that lipid accumulation occurs under nutritional stress. Aim of this research was to determine how changes in nitrogen availability affect productivity, oil yield, and fatty acid (FA) composition of P. tricornutum UTEX 640. After preliminary laboratory trials, outdoor experiments were carried out in 40‐L GWP® reactors under different nitrogen regimes in batch. Nitrogen replete cultures achieved the highest productivity of biomass (about 18 g m?2 d?1) and EPA (about 0.35 g m?2 d?1), whereas nitrogen‐starved cultures achieved the highest FA productivity (about 2.6 g m?2 d?1). The annual potential yield of P. tricornutum grown outdoors in GWP® reactors is 730 kg of EPA per hectare under nutrient‐replete conditions and 5,800 kg of FA per hectare under nitrogen starvation. Biotechnol. Bioeng. 2017;114: 2204–2210. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   

16.
Waigani Lake, near Port Moresby, Papua New Guinea and Barton Broad, Norfolk, England are both shallow lakes nutrient-enriched from sewage effluent disposal. In Waigani Lake phytoplankton biomass varied seasonally with lower levels (100-200 mg chlorophyll α m−3) during the wet season increasing to over 400 mg chlorophyll α m−3 at the end of the dry season. Secchi disc depths varied between 0. 11 and 0. 34 m. Phytoplankton productivity in Waigani Lake was very high throughout the year (range: Amax 4,370-21,000 mg O2 m−3 h−1) but production was lower during the wet season (range: Amax 4,370-12,700 mg O2 m−3 h−1). High surface productivity was recorded from August to December except on sampling days when the weather was overcast. Productivity throughout the year declined rapidly with depth. Algal biomass in Barton Broad varied from 3-10 mg chlorophyll α m−3 in winter but increased in spring and was very high in summer (200-500 mg chlorophyll α m−3). Secchi disc depth varied from 0.21 m in August 1976 to 1.76 m in December. Phytoplankton production in Barton Broad was low in winter (range: Amax 247-1,250 mg O2 m−3 h−1) but increased markedly in spring and summer with the highest rate (Amax 6,850 mg O2 m−3 h−1) being recorded in August. Surface inhibition was observed during summer except when the weather was overcast. Seasonality in nutrients and phytoplankton in Waigani Lake appear to be related to rainfall. Nutrient concentrations in Barton Broad are more closely related to phytoplankton activity which, in turn, correlates with seasonality in solar radiation.  相似文献   

17.
The standing crop and primary productivity of a small eutrophic, prairie-parkland lake were measured. In general, both standing crops and primary productivity were large, 29.4 and 73.09 mg chlorophyll a m−3 and m−2 and 78.71 and 196.77 mg C hr −1m−3 and m−2 respectively. Productivity decreased with increasing depth, therefore, decreasing light intensity. Relations between productivity and chlorophyll a content, productivity and light intensity, phytoplankton productivity efficiency and light intensity, productivity and water temperature were investigated, as was the photosynthetic index. Experiments designed to determine the photosynthetic capacity of the phytoplankton distinguished between actively growing and senescent populations. The latter were present during the winter ice cover.  相似文献   

18.
The relationship between the distribution of the whale shark Rhincodon typus and hydrobiological variables in the Caribbean Sea during 2005–2009 was analysed. Monthly trips were made to the R. typus aggregation area during the months when this species is present in the region (May to September) to record sightings and hydrological data and to collect samples to determine nutrients, chlorophyll a (Chl a) and zooplankton biomass. A total of 2104 R. typus were counted and three zones of high abundance were identified: Cabo‐Catoche, Contoy (both within the Whale Shark Biosphere Reserve, WSBR) and the zone knows as Afuera. The zones of greatest R. typus density within the WSBR were characterized by high Chl a concentrations (median: 1·1 mg m?3, interpercentile range: 0·5–1·8 mg m?3) and high nutrient concentrations, such as ammonium (median: 2·5 µmol l?1, interpercentile range: 0·5–6·4 µmol l?1), due to the influence of local upwelling. A generalized additive model (GAM) was used to explore the relationship between R. typus distribution and the environmental variables inside WSBR. Zooplankton biomass was the most influential environmental variable, supporting the close relationship between R. typus distribution and biological productivity. Copepods were the dominant zooplankton group within the WSBR. In the Afuera zone, there were large R. typus aggregations (>80 individuals) associated with zooplankton dominated by fish eggs and significantly higher mean ± s.d. biomass (3356·1 ± 1960·8 mg m?3) compared with that recorded inside the WSBR (103·5 ± 57·2 mg m?3). The differences among zones generated changes in R. typus distribution patterns and provided opportunities to develop local management strategies for this species.  相似文献   

19.
A natural assemblage of microalgae from a facultative lagoon system treating municipal wastewater was enriched for growth in the effluents of an anaerobic digester processing dairy waste. A green microalga with close resemblance to Chlorella sp. was found to be dominant after multiple cycles of sub‐culturing. Subsequently, the strain (designated as LLAI) was isolated and cultivated in 20× diluted digester effluents under various incident light intensities (255–1,100 µmoles m?2 s?1) to systematically assess growth and nutrient utilization. Our results showed that LLAI production increased with increasing incident light and a maximum productivity of 0.34 g L?1 d?1 was attained when the incident irradiance was 1,100 µmoles m?2 s?1. Lack of growth in the absence of light indicated that the cultures did not grow heterotrophically on the organic compounds present in the medium. However, the cultures were able to uptake organic N and P under phototrophic conditions and our calculations suggest that the carbon associated with these organic nutrients contributed significantly to the production of biomass. Overall, under high light conditions, LLAI cultures utilized half of the soluble organic nitrogen and >90% of the ammonium, orthophosphate, and dissolved organic phosphorus present in the diluted waste. Strain LLAI was also found to accumulate triacylglycerides (TAG) even before the onset of nutrient limitation and a lipid productivity of 37 mg‐TAG L?1 d?1 was measured in cultures incubated at an incident irradiance of 1,100 µmoles m?2 s?1. The results of this study suggest that microalgae isolates from natural environments are well‐suited for nutrient remediation and biomass production from wastewater containing diverse inorganic and organic nutrient species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1336–1342, 2016  相似文献   

20.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号