首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sensory evaluation makes use of the remarkable virtuosity and range of the human senses as a multi-purpose instrument for measuring the sensory characteristics of foods. The brain protects itself from an overload of information from the senses by two processes: feature extraction and adaptation. The former involves information reduction by the extraction of selected features from the environment; these form the basis for the reconstruction of the percept in consciousness. The latter, adaptation, involves the attenuation of repetitive and constant input so as not to overload the brain with redundant information.
The effects of adaptation can be observed for all senses. For the chemical senses, the effect is that a constant odor or taste stimulus will be perceived as decreasing in intensity while sensitivity to that stimulus is also decreased. For sensory evaluation, this poses problems. It means that a taste or odor has a tendency to vanish while it is being observed and that sensitivity to subsequent stimuli will be altered. Such sensitivity drift in the human instrument must be anticipated in the design of measurement procedures for the sensory evaluation of food.
For taste, adaptation changes caused by the measurement method can be seen to be largely responsible for disagreements in the literature concerning threshold and intensity measurement. Adaptation is also a contributing factor, but by no means the only one, in determining the relative discriminability of sensory difference tests. It is worth noting, however, that adaptation is not always a disadvantage; it can sometimes be used to advantage in sensory testing procedures.  相似文献   

2.
3.
Perceptual aftereffects following adaptation to simple stimulus attributes (e.g., motion, color) have been studied for hundreds of years. A striking recent discovery was that adaptation also elicits contrastive aftereffects in visual perception of complex stimuli and faces [1-6]. Here, we show for the first time that adaptation to nonlinguistic information in voices elicits systematic auditory aftereffects. Prior adaptation to male voices causes a voice to be perceived as more female (and vice versa), and these auditory aftereffects were measurable even minutes after adaptation. By contrast, crossmodal adaptation effects were absent, both when male or female first names and when silently articulating male or female faces were used as adaptors. When sinusoidal tones (with frequencies matched to male and female voice fundamental frequencies) were used as adaptors, no aftereffects on voice perception were observed. This excludes explanations for the voice aftereffect in terms of both pitch adaptation and postperceptual adaptation to gender concepts and suggests that contrastive voice-coding mechanisms may routinely influence voice perception. The role of adaptation in calibrating properties of high-level voice representations indicates that adaptation is not confined to vision but is a ubiquitous mechanism in the perception of nonlinguistic social information from both faces and voices.  相似文献   

4.
The central program of a targeted movement includes a component intended for to compensate for the weight of the arm; this is why the accuracy of pointing to a memorized position of the visual target in darkness depends on orientation of the moving limb in relation to the vertical axis. Transition from the vertical to the horizontal body position is accompanied by a shift of the final hand position along the body axis towards the head. We studied how pointing errors and visual localization of the target are modified due to adaptation to the horizontal body position; targeted movements to a real target were repeatedly performed during the adaptation period. Three types of experiments were performed: a basic experiment, and two different experiments with adaptation realized under somewhat dissimilar conditions. In the course of the first adaptation experiment, subjects received no visual information on the hand’s position in space, and targeted movements of the arm to a luminous target could be corrected using proprioceptive information only. With such a paradigm, the accuracy of pointing to memorized visual targets showed no adaptation-related changes. In the second adaptation experiment, subjects were allowed to continuously view a marker (a light-emitting diode taped to the fingertip). After such adaptation practice, the accuracy of pointing movements to memorized targets increased: both constant and variational errors, as well as both components of constant error (i.e.,X andY errors) significantly dropped. Testing the accuracy of visual localization of the targets by visual/verbal adjustment, performed after this adaptation experiment, showed that the pattern of errors did not change compared with that in the basic experiment. Therefore, we can conclude that sensorimotor adaptation to the horizontal position develops much more successfully when the subject obtains visual information about the working point position; such adaptation is not related to modifications in the system of visual localization of the target.  相似文献   

5.
Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.  相似文献   

6.
Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli''s chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response.  相似文献   

7.
Second-order cues are visual stimuli that are detectable by human observers, without eliciting a peak in Fourier energy that corresponds to their perceptual properties. The most commonly studied exemplars of second-order cues are those defined by modulation of local contrast (CM). It is widely accepted that such cues are initially detected separately from first-order, luminance modulated (LM), cues. However, after-effects have been shown to transfer between first- and second-order cues (LM and CM, respectively). This suggests the existence of a late link in the mechanisms that subserve their processing. To extend the investigation of the mechanisms for processing second-order cues we consider cues defined by modulations in local orientation (OM). Using a tilt-after-effect (TAE) paradigm, we found partial transfer of adaptation between LM and OM cues, confirming the presence of a link between first and second-order cues. Furthermore, we found a partial transfer of TAE between OM and CM cues. These results suggest that, at or before the site of adaptation, information from all visual cues is combined. However, as transfer of adaptation is below 100% in all cases, this is only a partial integration of information.  相似文献   

8.
This paper presents a systematic analysis of the role of opponent type processing in colour vision and the relation between opponent type colour transformations and the initial three colour mechanisms. It is shown that efficient information transmission is achieved by a transformation of the initial three colour mechanisms into an achromatic and two opponent chromatic channels. The derivation of the transformation is dependent solely on criteria from information theory. Thus it provides a logical rationale reconciling opponent type processing as an optimal necessary step after the initial three colour mechanisms, unifying respectively the Hering and Young-Helmholtz approaches to colour vision. The effects of chromatic adaptation on the spectral response of the achromatic and two chromatic channels are discussed from the point of view of information theory. It is argued that adaptation serves as a dynamic readjustment of these responses, necessary to meet criteria of efficient colour information transmission. The results are confronted with empirical observations to test the principles of the theory and the relation to other theories is discussed. Within the same framework the issue of trichromacy is discussed. It is argued that a broad class of typical colour spectra can effectively be represented by three significant degrees of freedom that make up a trichromatic system.  相似文献   

9.
J Stock  G Kersulis  D E Koshland 《Cell》1985,42(2):683-690
Clarification of the information processing system in bacterial sensing has been obtained by studying mutants that lack the capacity to modify receptors covalently. The remaining part of the system is able to receive signals from the receptor, to respond with partial adaptation, and to exhibit a chemotactic response. A cycle of chemical reactions analogous to the rhodopsin-transducin cycle in the visual system is shown to provide the proper characteristics to serve as the bridge between receptor and chemotactic output, which allows adaptation in the absence of covalent protein modifications.  相似文献   

10.
Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters such as adaptation rate and adapted activity affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. We examine this issue using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation. By focusing on how sensory information carried by the response regulator is best utilized by the motor, we identify an operational regime that maximizes drift velocity along chemical concentration gradients for a wide range of environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.  相似文献   

11.
As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced.  相似文献   

12.
Biological systems process information under noisy environment. Sensory adaptation model of E. coli is suitable for investigation because of its simplicity. To understand the adaptation processing quantitatively, stochastic thermodynamic approach has been attempted. Information processing can be assumed as state transition of a system that consists of signal transduction molecules using thermodynamic approach, and efficiency can be measured as thermodynamic cost. Recently, using information geometry and stochastic thermodynamics, a relationship between speed of the transition and the thermodynamic cost has been investigated for a chemical reaction model. Here, we introduce this approach to sensory adaptation model of E. coli, and examined a relationship between adaptation speed and the thermodynamic cost, and efficiency of the adaptation speed. For increasing external noise level in stimulation, the efficiency decreased, but the efficiency was highly robust to external stimulation strength. Moreover, we demonstrated that there is the best noise to achieve the adaptation in the aspect of thermodynamic efficiency. Our quantification method provides a framework to understand the adaptation speed and the thermodynamic cost for various biological systems.  相似文献   

13.
甘南高原农户对极端天气的适应障碍及适应意向   总被引:1,自引:0,他引:1  
王伟军  赵雪雁  万文玉  李花  薛冰 《生态学报》2017,37(23):8089-8100
基于入户调查数据,探讨了甘南高原农户对极端天气的适应障碍,并采用二元Logistic回归模型分析了适应障碍对农户适应意向的影响。结果发现:(1)甘南高原农户面临的规范性障碍最严重,信息技术障碍次之,再次为制度障碍和认知障碍。不同生计农户面临的适应障碍存在差异,其中,纯农户主要面临信息技术障碍,兼业户和非农户则主要面临规范性障碍。(2)纯农户对极端天气的适应意向主要受认知障碍、信息准确性障碍、适应策略选择时机障碍、政策激励障碍和牲畜拥有量的影响,兼业户主要受认知障碍、技术服务障碍、政策激励障碍影响,非农户主要受认知障碍、资源获取性障碍影响。除适应策略选择时机障碍外,其余适应障碍越小,不同生计农户的积极适应意向均越强。最后,提出了解决农户适应障碍的对策建议。  相似文献   

14.
Studies of genetic correlations between traits that ostensibly channel the path of evolution away from the direction of natural selection require information on key aspects such as ancestral phenotypes, the duration of adaptive evolution, the direction of natural selection, and genetic covariances. In this study we provide such information in a frog population system. We studied adaptation in life history traits to pool drying in frog populations on islands of known age, which have been colonized from a mainland population. The island populations show strong local adaptation in development time and size. We found that the first eigenvector of the variance–covariance matrix (g max) had changed between ancestral mainland populations and newly established island populations. Interestingly, there was no divergence in g max among island populations that differed in their local adaptation in development time and size. Thus, a major change in the genetic covariance of life-history traits occurred in the colonization of the island system, but subsequent local adaptation in development time took place despite the constraints imposed by the genetic covariance structure.  相似文献   

15.
Sensory systems adapt their neural code to changes in the sensory environment, often on multiple time scales. Here, we report a new form of adaptation in a first-order auditory interneuron (AN2) of crickets. We characterize the response of the AN2 neuron to amplitude-modulated sound stimuli and find that adaptation shifts the stimulus-response curves toward higher stimulus intensities, with a time constant of 1.5 s for adaptation and recovery. The spike responses were thus reduced for low-intensity sounds. We then address the question whether adaptation leads to an improvement of the signal's representation and compare the experimental results with the predictions of two competing hypotheses: infomax, which predicts that information conveyed about the entire signal range should be maximized, and selective coding, which predicts that "foreground" signals should be enhanced while "background" signals should be selectively suppressed. We test how adaptation changes the input-response curve when presenting signals with two or three peaks in their amplitude distributions, for which selective coding and infomax predict conflicting changes. By means of Bayesian data analysis, we quantify the shifts of the measured response curves and also find a slight reduction of their slopes. These decreases in slopes are smaller, and the absolute response thresholds are higher than those predicted by infomax. Most remarkably, and in contrast to the infomax principle, adaptation actually reduces the amount of encoded information when considering the whole range of input signals. The response curve changes are also not consistent with the selective coding hypothesis, because the amount of information conveyed about the loudest part of the signal does not increase as predicted but remains nearly constant. Less information is transmitted about signals with lower intensity.  相似文献   

16.
A series of studies aimed at developing methods and systems for analyzing epigenetic information in cells are presented. The role of the epigenetic information of cells, which is complementary to their genetic information, was inferred by comparing the predictions of genetic information with the cell behaviour observed under conditions chosen to reveal adaptation processes and community effects. Analysis of epigenetic information was developed starting from the twin complementary viewpoints of cells regulation as an 'algebraic' system (emphasis on the temporal aspect) and as a 'geometric' system (emphasis on the spatial aspect). The knowlege acquired from this study will lead to the use of cells for fully controlled practical applications like cell-based drug screening and the regeneration of organs.  相似文献   

17.
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).  相似文献   

18.
Cognitive psychology is the study of how information, from the senses and from memory, is used in the production of behavior. Investigation of the specifics of behavioral adaptation has already led some behavioral ecologists into the domain of animal cognition. I make several arguments for the benefits and the necessity of a sophisticated assessment by ecologists of the cognitive aspects of behavioral adaptation. First, because cognition typically serves to produce adaptive behavior, cognitive structure and function should reflect ecological demands; studies of cognition in ecological contexts are opportunities to understand adaptation. Furthermore, constraints on cognitive properties may help determine how behavior meets the environment. Studies of spatial memory in food-caching corvids exemplify how cognitive aspects of behavior may both reflect and determine specifics of adaptation. Second, many models in behavioral ecology assume certain cognitive abilities, such as timing or counting. Cognitive theory and methodology should be used to determine whether animals possess these abilities. I have provided examples. Third, consideration of cognitive function can lead to original ideas about the details of behavioral adaptation. Without a thorough integration of cognitive psychology with behavioral ecology, our understanding of the relation between behavior and selective pressures will be compromised.  相似文献   

19.
When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing.  相似文献   

20.
The present study investigated whether emotional conflict and emotional conflict adaptation could be triggered by unconscious emotional information as assessed in a backward-masked affective priming task. Participants were instructed to identify the valence of a face (e.g., happy or sad) preceded by a masked happy or sad face. The results of two experiments revealed the emotional conflict effect but no emotional conflict adaptation effect. This demonstrates that emotional conflict can be triggered by unconsciously presented emotional information, but participants may not adjust their subsequent performance trial-by trial to reduce this conflict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号