首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spore germination in streptomycetes was shown to be stimulated by exogenously added A-factor. Agar medium either containing or not containing A-factor was inoculated with spore suspensions of three strains differing in their ability to produce regulators of the A-factor group: Streptomyces griseus 773, which produces A-factor and two its lower homologs; S. coelicolor A3(2), which forms six Acl-factors (A-factor analogues); and S. avermitilis JCM5070, which fails to form regulators of this group. A count of the grown colonies showed that exogenous A-factor stimulated spore germination in strains that were themselves able to synthesize regulators of the A-factor group. In S. griseus 773, the number of germinated spores increased by 67% on average after the addition of A-factor to the medium in an amount of 10 g/ml. In strain S. coelicolor A3 (2), the number of germinated spores increased by 75% after the addition of 1 g/ml of A-factor. During germination of the S. avermitilis JCM5070 spores, no changes in the CFU number was observed after the addition of A-factor.  相似文献   

2.
A study of 28 nocardia-like, asporogenous, and oligosporous spontaneous morphological variants belonging to 23 species of streptomycetes revealed five strains producing regulators of the A-factor group. Streptomyces griseus 1439, which forms aerial mycelium and spores only in the presence of exogenous A-factor was used as the test strain. Among the 28 spontaneous variants, three new A-factor-dependent strains were revealed, which represented the species Streptomyces griseus, S. citreofluorescens, and S. viridovulgaris subsp. albomarinus. These weakly differentiated variants id not produce A-factor and behaved as its recipients, responding by changes in their morphological characteristics at a concentration of this regulator in the medium of 0.01 microgram/ml and higher. The original collection strains in whose populations the variants were selected produced substances of the A-factor group. The A-factor-dependent variants differed in the level of the regulator required for maximal expression of the morphological characteristics were shown: it was necessary to introduce the A-factor at a concentration of 1 microgram/ml for S. citreofluorescens and S. viridovulgaris subsp. albomarinus and at 10 micrograms/ml for S. griseus.  相似文献   

3.
A-factor is a potent pleiotropic effector produced by Streptomyces griseus and is essential for streptomycin production and spore formation in this organism. Its production is widely distributed among various actinomycetes including Streptomyces coelicolor A3(2). Genetic analysis of A-factor production was carried out with S. coelicolor A3(2), and two closely linked loci for A-factor mutations (afsA and B) were identified between cysD and leuB on the chromosomal linkage map. In contrast, genetic crosses of A-factor-negative mutants of S. griseus, using a protoplast fusion technique, failed to give a fixed locus for A-factor gene(s) and suggested involvement of an extrachromosomal or transposable genetic element in A-factor synthesis in this organism.  相似文献   

4.
Spores of Streptomyces griseus contain trehalose and trehalase, but trehalose is not readily hydrolyzed until spore germination is initiated. Trehalase in crude extracts of spores, germinated spores, and mycelia of S. griseus had a pH optimum of approximately 6.2, had a Km value for trehalose of approximately 11 mM, and was most active in buffers having ionic strengths of 50 to 200 mM. Inhibitors or activators or trehalase activity were not detected in extracts of spores or mycelia. Several lines of evidence indicated that trehalose and trehalase are both located in the spore cytoplasm. Spores retained their trehalose and most of their trehalase activity following brief exposure to dilute acid. Protoplasts formed by enzymatic removal of the spore walls in buffer containing high concentrations of solutes also retained their trehalose and trehalase activity. Protoplasts formed in buffer containing lower levels of solutes contained low levels of trehalose. The mechanism by which trehalose metabolism is regulated in S. griseus spores is unresolved. A low level of hydration of the cytoplasm of the dormant spores and an increased level of hydration during germination may account for the apparent inactivity of trehalase in dormant spores and the rapid hydrolysis of trehalose upon initiation of germination.  相似文献   

5.
Streptomyces griseus ATCC 10137, S. griseus IMRU 3570, S. griseus JI 2212, S. acrimycini JI 2236 and S. albus G sporulated abundantly in several liquid media after nutritional downshift. Spores formed in submerged cultures were viable and as thermoresistant as aerial spores. Scanning electron microscopy showed that submerged spores are morphologically similar to aerial spores. The sporulation of the Streptomyces strains tested in complex medium appeared to be triggered by phosphate nutritional downshift, induced by addition of Ca2+ to the medium. Spore-shaped bodies were formed by S. lividans JI 1326 and S. coelicolor JI 2280 when grown in complex medium supplemented with Ca2+ and proline. The thermoresistance of these spore-shaped bodies differed from that of aerial spores.  相似文献   

6.
The adenylate content of various strains of Streptomyces griseus was measured. With respect to the ATP and ADP content the strains capable of spore formation, streptomycin synthesis and A-factor (2-isocapryloyl-3-hydroxymethyl-4-hydroxybutyrolactone) synthesis differed from the A-factor deficient mutants. The addition of the A-factor to the recipient strains decreased the intracellular content of ATP and the ATP/ADP ratio. The strain which is not an A-factor recipient did not modify the ATP content when the A-factor was added to the medium.  相似文献   

7.
Bacillus anthracis spore germination is usually detected in vitro by alterations in spore refractility, heat resistance, and stainability. We developed a more quantitative, sensitive, and semi-automated procedure for detecting germination by using a microtiter kinetic reader for fluorescence spectrophotometry. The procedure was based on the increase in fluorescence of spores with time during their incubation in germination medium containing a fluorescent nucleic acid-binding dye which stained germinated B. anthracis but not ungerminated (UG) spores. Spore germination in the presence of several germinants was characterized. Although L-alanine and inosine alone stimulated rapid germination in this assay, a medium containing optimal concentrations of L-alanine, adenosine, and casamino acids gave low background fluorescence, stimulated germination completely, and at a reasonable rate. Suspensions of heat-activated, UG spores of B. anthracis strain Ames were preincubated with antibodies (Abs) against whole spores to assess their effect on germination. Analyses of the germination data obtained revealed significant differences between spores pretreated with these Abs and those treated with non-immune sera or IgG. Germination inhibitory activity (GIA) was detected for several polyclonal rabbit anti-spore Ab preparations. These included anti-Ames strain spore antisera, IgG purified from the latter, and spore affinity-purified Abs from antisera elicited against four strains of B. anthracis. Abs elicited against UG as well as completely germinated Ames spores inhibited germination. Abs were ranked according to their GIA, and those specific for UG spores usually exhibited greater GIA. Direct binding to spores of these Abs was detected by an ELISA with whole un-germinated Ames spores. Although specific binding to spores by the anti-spore Abs was shown, their titers did not correlate with their GIA levels. Current efforts are focused on identifying the spore antigens recognized by the anti-spore Abs, characterizing the role of these targeted antigens in disease pathogenesis, and evaluating the ability of specific anti-spore Abs to protect against infection with B. anthracis.  相似文献   

8.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains.  相似文献   

9.
Characteristics of 6 A-factor deficient mutants of S. griseus are presented. The common feature of the mutants was impairment of sporulation, formation of aerial mycelium and streptomycin synthesis. Pair-by-pair hybridization of the mutants was performed with protoplast fusion followed by regeneration. 9 pair couplings of the mutants were performed. In 3 of them sporulating recombinants were detected. The antibiotic production level in 70 hybrids was different and ranged from 0 to 1700 micrograms/ml. The morphological features of the colonies and the number of the spores formed were also different. The common feature of all the 70 sporulating hybrid strains was recovery of synthesis of A-factor, an endogenic regulator of S. griseus development. Therefore, in the A-factor deficient mutants impairment of A-factor synthesis was induced not by the plasmid elimination, as was suggested, but by mutation of separate genes.  相似文献   

10.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

11.
Although cholesterol esterase (CHE; EC 3.1.1.13) is widespread in nature, CHEs from Streptomyces lavendulae and Streptomyces sp. X9 are the only known CHEs produced by actinomycetes. We purified CHEs from S. avermitilis JCM5070, and S. griseus IFO13350 and identified four new CHEs from actinomycetes. The enzymic properties of the CHEs from Streptomyces sp. X9, S. avermitilis, and S. griseus including substrate specificity, sensitivity to inhibitors and optimal conditions for catalysis were similar. We identified genes for the CHEs from Streptomyces sp. X9 and S. avermitilis and the encoded predicted sequences comprised 217 and 214 amino acid residues, respectively, with 64% similarity. The CHEs from Streptomyces sp. X9 and S. avermitilis were also 54 and 57% similar, respectively, to S. lavendulae CHE, indicating that these CHEs are orthologs. Phylogenetic analysis showed that they are distantly related to the conventional lipase/esterase type CHEs from mammals, yeasts and other bacteria. The actinomycetes CHEs did not have the Gly-Xaa-Ser-Xaa-Gly sequence that is conserved in the lipase/esterase family. A database search showed that orthologs of this type of CHE were restricted to actinomycetes. These findings imply that the actinomycetes CHEs constitute a novel family of cholesterol esterases.  相似文献   

12.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

13.
We cloned a DNA fragment directing synthesis of A-factor from the total cellular DNA of streptomycin-producing Streptomyces bikiniensis on the plasmid vector pIJ385 . Introduction of the recombinant plasmid ( pAFB1 ) into A-factor-deficient S. bikiniensis and Streptomyces griseus mutants led to A-factor production in the host cells, as a result of which streptomycin production, streptomycin resistance, and spore formation of these mutants were simultaneously restored. The plasmid pAFB1 also complemented both afsA and afsB mutations of Streptomyces coelicolor A3(2). These results indicated that the cloned DNA fragment contained the genetic determinant of A-factor biosynthesis. The cloned fragment, when carried on a multicopy vector plasmid, induced production of a large amount of A-factor in several Streptomyces hosts. In Southern blot DNA/DNA hybridization analyses with a trimmed 5-kilobase fragment containing the intact A-factor determinant as probe, total cellular DNA from A-factor-deficient mutants gave no positive hybridization. The DNA blot experiment also showed a wide distribution of sequences homologous to the S. bikiniensis A-factor determinant among most, but not all, A-factor-producing actinomycetes with a varying extent of homology and the absence of these sequences from most A-factor nonproducers .  相似文献   

14.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

15.
Heat resistance at 95 C, heat activation at 75 C, and germination response were determined for spores of 10 serotype strains of Clostridium perfringens type A, including five heat-resistant and five heat-sensitive strains. The D95-values ranged from 17.6 to 63.0 and from 1.3 to 2.8 for the heat-resistant and the heat-sensitive strains, respectively. The heat-activation values, the ratios between the heated and unheated viable counts of spore suspensions, ranged from 0.0035 to 0.65 and from 6.5 to 60.0 for the heat-sensitive and the heat-resistant strains, respectively. Spores of these strains were divided into two distinct germination types on the basis of their germination response; spores of the heat-resistant strains germinated in KC1 medium after heat activation (K-type), and spores of the heat-sensitive strains germinated in a mixture of L-alanine, inosine, and CaCl2 in the presence of CO2 without heat activation (A-type). The strains were tested for enterotoxigenicity by a reversed passive latex-agglutination (RPLA) test. All the heat-resistant strains were RPLA-positive, whereas the heat-sensitive strains were all RPLA-negative. A total of 37 strains of the organism isolated from food-poisoning outbreaks were tested for spore germination and enterotoxin formation. All of the 20 heat-resistant strains showed K-type spore germination and, except for three strains, were RPLA-positive, whereas all of the 17 heat-sensitive strains showed A-type spore germination and, except for only one strain, were RPLA-negative.  相似文献   

16.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

17.
Out of 111 Clostridium difficile strains, 108 produced spores in numbers of more than 10(5)/ml and the remaining three did not produce any spores in brain heart infusion medium. The germination frequency in the medium without lysozyme varied widely from strain to strain, ranging from less than 10(-8) to 10(0), and in 77 of the 108 strains the germination frequency was 10(-5) or less. The spores, when treated with sodium thioglycollate and then inoculated into the medium containing lysozyme, germinated in all of the 108 strains at a frequency of 10(-0.5) or more. The spores of two strains germinated at a frequency of more than 10(-0.5) in all methods. Spores of C. difficile strains were fairly highly heat-resistant; D100C values ranged from 2.5 to 33.5 min.  相似文献   

18.
The spores of six strains of Bacillus megaterium were divided into two distinct groups on the basis of germination. Three of the strains germinated in a mixture of l-alanine and inosine (AL type spores), and three strains germinated in a mixture of glucose and potassium nitrate (GN type spores); recriprocal germination in the respective solutions did not occur. The AL spores and the GN spores were morphologically distinct. Other differences between the two spore groups included germination inhibition characteristics, dipicolinic acid content, hexosamine content, phosphorus and magnesium content, spore coat features, ion exchange properties, and heat resistance. A correlation appears to exist between spore morphology and certain other spore properties in strains of B. megaterium.  相似文献   

19.
The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The "inducing material" virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.  相似文献   

20.
Abstract A DNA fragment that caused pigment production in Streptomyces lividans was isolated from a gene library of Pst I-digested chromosomal fragments of S. coelicolor A3(2). Subcloning and nucleotide sequencing proved the identity of the cloned gene to ptpA encoding a low-molecular-mass phosphotyrosine protein phosphatase. The S. lividans transformant containing ptpA on pIJ41 with a copy number of 3–4 per genome produced large amounts of undecylprodigiosin and A-factor, in addition to the pigmented antibiotic actinorhodin, whereas the transformant containing ptpA on an SCP2* derivative with a copy number of 1–2 did not. The PtpA protein produced as a fusion to the maltose binding protein in Escherichia coli showed phosphatase activity toward o -phosphotyrosine, but not toward o -phosphoserine or o -threonine. Introduction of a mutant ptpA gene encoding an inactive protein with serine instead of the 9th cysteine caused no pigmentation. Disruption of the chromosomal ptpA gene of S. coelicolor A3(2), however, appeared to cause no detectable effect on the production of the pigmented antibiotics or A-factor and the ptpA disruptants developed aerial mycelium and spores normally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号