首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uterine uptake of amino acids was studied in 10 pregnant sheep with gestational ages of 114-146 days. After recovery from surgery, arterial and uterine venous samples were drawn simultaneously via indwelling catheters and analysed for amino acid and oxygen content. In seven ewes, amino acid concentrations were measured by a chromatographic technique. In four ewes, glutamate and glutamine arterio-venous differences across the uterine and umbilical circulations were measured by an enzymatic method. The uptake of neutral and basic amino acids was 66 mumol/mmol O2 and 17.3 mumol/mmol O2, respectively. Comparison of uterine and umbilical uptake shows that the bulk of the neutral and basic amino acids taken up by the pregnant uterus are transferred to the fetus. there was no significant uptake of acidic amino acids (i.e. glutamate, aspartate and taurine). glutamate was delivered from the fetus to the placenta but excretion of glutamate into the uterine circulation was negligible. Glutamine and asparagine were delivered to the fetus in amount which were two to three times larger than the placental uptake of glutamate and aspartate. Therefore placental conversion of exogenous glutamate and aspartate to glutamine and asparagine cannot account entirely for the fetal uptake of these amino acids.  相似文献   

2.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

3.
4.
Mechanism of amino Acid uptake by sugarcane suspension cells   总被引:13,自引:5,他引:8       下载免费PDF全文
Wyse RE  Komor E 《Plant physiology》1984,76(4):865-870
The amino acid carriers in sugarcane suspension cells were characterized for amino acid specificity and the stoichiometry of proton and potassium flux during amino acid transport.

Amino acid transport by sugarcane cells is dependent upon three distinct transport systems. One system is specific for neutral amino acids and transports all neutral amino acids including glutamine, asparagine, and histidine. The uptake of neutral amino acids is coupled to the uptake of one proton per amino acid; one potassium ion leaves the cells for charge compensation. Histidine is only taken up in the neutral form so that deprotonation of the charged imidazole nitrogen has to occur prior to uptake. The basic amino acids are transported by another system as uniport with charge-compensating efflux of protons and potassium. The acidic amino acids are transported by a third system. Acidic amino acids bind to the transport site only if the distal carboxyl group is in the dissociated form (i.e. if the acidic amino acid is anionic). Two protons are withdrawn from the medium and one potassium leaves the cell for charge compensation during the uptake of acid amino acids. Common to all three uptake systems is a monovalent positively charged amino acidproton carrier complex at the transport site.

  相似文献   

5.
A general amino acid permease cDNA ( AAP2 ) was isolated from Arabidopsis by complementation of a yeast mutant defective in citrulline uptake. Direct transport measurements in yeast show that the protein mediates uptake of l -[14C]-citrulline and l -[14C]-proline. Detailed analyses of the substrate specificity by competition studies demonstrate that all proteogenic amino acids are recognized by the carrier, including those that represent the major transport forms of reduced nitrogen in many species, i.e. glutamine, glutamate and asparagine. Thus, AAP2 is less selective as compared with AAP1 and transports basic amino acids such as histidine as shown by expression in a histidine transport-deficient yeast strain. The predicted polypeptide of 53 kDa is highly hydrophobic with 12 putative membrane-spanning regions and shows significant homologies to the Arabidopsis broad specificity permease AAP1, and a limited homology to bacterial branched chain amino acid transporters, but not to any other known proteins. Alterations in the charged residues as compared with AAP1 in four regions might be involved in the difference in selectivity towards basic amino acids. Both genes are highly expressed in developing pods indicating a role in supplying the developing seeds with reduced nitrogen. AAP2 is selectively expressed in the stem and might therefore play a role in xylem-to-phloem transfer of amino acids during seed filling. Furthermore in situ hybridization shows that both genes are expressed in the vascular system of cotyledons in developing seedlings.  相似文献   

6.
Seven genes in Saccharomyces cerevisiae are predicted to code for membrane-spanning proteins (designated AVT1-7) that are related to the neuronal gamma-aminobutyric acid-glycine vesicular transporters. We have now demonstrated that four of these proteins mediate amino acid transport in vacuoles. One protein, AVT1, is required for the vacuolar uptake of large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine, and leucine. Three proteins, AVT3, AVT4, and AVT6, are involved in amino acid efflux from the vacuole and, as such, are the first to be shown directly to transport compounds from the lumen of an acidic intracellular organelle. This function is consistent with the role of the vacuole in protein degradation, whereby accumulated amino acids are exported to the cytosol. Protein AVT6 is responsible for the efflux of aspartate and glutamate, an activity that would account for their exclusion from vacuoles in vivo. Transport by AVT1 and AVT6 requires ATP for function and is abolished in the presence of nigericin, indicating that the same pH gradient can drive amino acid transport in opposing directions. Efflux of tyrosine and other large neutral amino acids by the two closely related proteins, AVT3 and AVT4, is similar in terms of substrate specificity to transport system h described in mammalian lysosomes and melanosomes. These findings suggest that yeast AVT transporter function has been conserved to control amino acid flux in vacuolar-like organelles.  相似文献   

7.
Y. Nagata  K. Kubota 《Amino acids》1993,4(1-2):121-125
Summary Eleven neutral amino acids and two acidic amino acids in tissue proteins of mouse kidney, liver and brain were analyzed for the presence of D-enantiomers. The proteins were hydrolyzed with HCl for 6 h. Of the thirteen amino acids investigated, the presence of D-enantiomers of serine, alanine, proline, aspartate and glutamate (including asparagine and glutamine) was shown in the hydrolysates. However, the level of D-enantiomers were not significantly higher than that of 6-h hydrolysate of serum albumin examined as a control protein. Serum albumin was shown to contain no D-amino acid residues.  相似文献   

8.
Amino acids are available to plants in some soils in significant amounts, and plants frequently make use of these nitrogen sources. The goal of this study was to identify transporters involved in the uptake of amino acids into root cells. Based on the fact that high concentrations of amino acids inhibit plant growth, we hypothesized that mutants tolerating toxic levels of amino acids might be deficient in the uptake of amino acids from the environment. To test this hypothesis, we employed a forward genetic screen for Arabidopsis thaliana mutants tolerating toxic concentrations of amino acids in the media. We identified an Arabidopsis mutant that is deficient in the amino acid permease 1 (AAP1, At1g58360) and resistant to 10 mm phenylalanine and a range of other amino acids. The transporter was localized to the plasma membrane of root epidermal cells, root hairs, and throughout the root tip of Arabidopsis. Feeding experiments with [(14)C]-labeled neutral, acidic and basic amino acids showed significantly reduced uptake of amino acids in the mutant, underscoring that increased tolerance of aap1 to high levels of amino acids is coupled with reduced uptake by the root. The growth and uptake studies identified glutamate, histidine and neutral amino acids, including phenylalanine, as physiological substrates for AAP1, whereas aspartate, lysine and arginine are not. We also demonstrate that AAP1 imports amino acids into root cells when these are supplied at ecologically relevant concentrations. Together, our data indicate an important role of AAP1 for efficient use of nitrogen sources present in the rhizosphere.  相似文献   

9.
We performed a comparative analysis of the genome sequences of three anaerobic halophilic fermentative bacteria belonging to the order Halanaerobiales: Halanaerobium praevalens, the alkaliphilic "Halanaerobium hydrogeniformans", and the thermophilic Halothermothrix orenii to assess the amino acid composition of their proteins. Members of the Halanaerobiales were earlier shown to accumulate KCl rather than organic compatible solutes for osmotic balance, and therefore the presence of a dominantly acidic proteome was predicted. Past reports indeed showed a large excess of acidic over basic amino acids in whole-cell hydrolysates of selected members of the order. However, the genomic analysis did not show unusually high contents of acidic amino acids or low contents of basic amino acids. The apparent excess of acidic amino acids in these anaerobic halophiles reported earlier is due to the high content in their proteins of glutamine and asparagine, which yield glutamate and aspartate upon acid hydrolysis. It is thus suggested that the proteins of the Halanaerobiales, which are active in the presence of high intracellular KCl concentrations, do not possess the typical acidic signature of the 'halophilic' proteins of the Archaea of the order Halobacteriales or of the extremely halophilic bacterium Salinibacter.  相似文献   

10.
Conifers are the most important group of gymnosperms, which include tree species of great ecological and economic importance that dominate large ecosystems and play an essential role in global carbon fixation. Nitrogen (N) economy has a special importance in these woody plants that are able to cope with seasonal periods of growth and development over a large number of years. As N availability in the forest soil is extremely low, efficient mechanisms are required for the assimilation, storage, mobilization, and recycling of inorganic and organic forms of N. The cyclic interconversion of arginine and the amides glutamine and asparagine plays a central role in the N metabolism of conifers and the regulation of these pathways is of major relevance to the N economy of the plant. In this paper, details of recent progress in our understanding of the metabolism of arginine and the other major amino acids glutamine, glutamate, aspartate, and asparagine in pine, a conifer model tree, are presented and discussed.  相似文献   

11.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

12.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

13.
The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent Km ranging from 6 to 60 microM) and of Vmax.  相似文献   

14.
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique that allows one to generate sub-millisecond glutamate concentration jumps to locate possible binding sites of the glutamate transporter for the cotransported proton. One candidate for this binding site, the highly conserved glutamic acid residue Glu-373 of EAAC1, was mutated to glutamine. Our results demonstrate that the mutant transporter does not catalyze net transport of glutamate, whereas Na(+)/glutamate homoexchange is unimpaired. Furthermore, the voltage dependence of the rates of Na(+) binding and glutamate translocation are unchanged compared with the wild-type. In contrast to the wild-type, however, homoexchange of the E373Q transporter is completely pH-independent. In line with these findings the transport kinetics of the mutant EAAC1 show no deuterium isotope effect. Thus, we suggest a new transport mechanism, in which Glu-373 forms part of the binding site of EAAC1 for the cotransported proton. In this model, protonation of Glu-373 is required for Na(+)/glutamate translocation, whereas the relocation of the carrier is only possible when Glu-373 is negatively charged. Interestingly, the Glu-373-homologous amino acid residue is glutamine in the related neutral amino acid transporter alanine-serine-cysteine transporter. The function of alanine-serine-cysteine transporter is neither potassium- nor proton-dependent. Consequently, our results emphasize the general importance of glutamate and aspartate residues for proton transport across membranes.  相似文献   

15.
Chemotaxis toward amino acids in Escherichia coli   总被引:64,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

16.
Excitatory amino acids have been implicated in the production of calcium mediated neuronal death following central nervous system ischemia. We have used microdialysis to investigate changes in the extracellular concentrations of amino acids in the spinal cord after aortic occlusion in the rabbit. Glutamate, aspartate, glutamine, asparagine, glycine, taurine, valine, and leucine were measured in the micordialysis perfusate by high pressure liquid chromatography. The concentrations of glutamate, glycine, and taurine were significantly higher during ischemia and reperfusion than controls. Delayed elevations in the concentrations of asparagine and valine were also detected. The elevation of glutamate is consistent with the hypothesis that excitotoxins may mediate neuronal damage in the ischemic spinal cord. Increased extracellular concentrations of asparagine and valine may reflect preferential use of amino acids for energy metabolism under ischemic conditions. The significance of increased concentrations of inhibitory amino acid neurotransmitters is unclear.  相似文献   

17.
The application of neutral or acidic amino acids to oat coleptiles induced transient depolarizations of the membrane potentials. The depolarizations are considered to reflect H+ -amino acid co-transport, and the spontaneous repolarizations are believed to be caused by subsequent electrogenic H+ extrusion. The basic amino acids depolarized the cell membrane strongly, but the repolarizations were weak or absent. The depolarizations induced by the basic amino acids were weakly sensitive to manipulations of the extracellular and intracellular pH. The depolarizations induced by the other amino acids, in contrast, were more strongly affected by the pH changes. Several amino acids induced distinct but diminished depolarizations in the presence of 2,4-dinitrophenol or cyanide, but the repolarizations were generally eliminated. These experiments support the co-transport theory but suggest somewhat different mechanisms for the transport of the neutral, acidic, and basic amino acids. We suggest that the neutral amino acids are co-transported with a single H+ and that accumulation depends upon both the ΔpH and the membrane potential components of the proton motive force. The acidic amino acids appear to be accumulated by a similar mechanism except that the transport of each molecule may be associated with a cation in addition to a single proton. The permanently protonated basic amino acids appear not to be co-transported with an additional proton. Accumulation would depend only on the membrane potential component of the proton motive force.  相似文献   

18.
Cut, fruiting shoots of Lupinus albus L. supplied with 14C-and 15N-labelled L-asparagine, L-glutamine, L-aspartic acid,or L-glutamic acid through the transpiration stream readilytransferred the labelled carbon and nitrogen of each compoundto pods and seeds of fruits. A time course of labelling of phloemsap collected from petioles and fruit tips following feedingof labelled asparagine indicated that xylem to phloem exchangein leaflets was an immediate and effective route of transferof the amide to fruits and that this and the loading onto phloemof additional asparagine from unlabelled pools of the amidein stems furnished a major source of the nitrogen for fruitfilling. Xylem to phloem exchange of nitrogen was accomplishedin different ways for each amino acid. The amide nitrogen ofasparagine was transferred mainly in the unmetabolized compound,the nitrogen of aspartate and glutamate largely in a wide rangeof amino acids synthesized in the leaf, and the amide nitrogenof glutamine was transferred in a manner intermediate betweenthese extremes. Glutamine and asparagine were the principalphloem solutes labelled with nitrogen from any of the suppliedcompounds, but the photosynthetically produced amino acids,glutamate, aspartate, serine, alanine, and valine also became15N-labelled in phloem. The main pathway for glutamine synthesisin vegetative parts of the shoot appeared to be by amidationof glutamate, but asparagine was not considered to be derivedsimilarly from aspartate. Leaflets metabolized glutamine morereadily than asparagine, but in each case the amide nitrogenwas used for synthesis of a variety of amino acids and the carbonwas recovered largely in non-amino compounds.  相似文献   

19.
The effects of the various naturally occurring amino acids on ethanol oxidation in hepatocytes from starved rats was systematically studied. In order to minimize the non ADH pathways, the ethanol concentration used was 4 mmol/litre, the amino acids being added at the same concentration. In hepatocytes from fasted rats, alanine, arginine, asparagine, aspartate, citrulline, cysteine, glutamate, glutamine, glycine, histidine, hydroxyproline, ornithine and serine increase significantly ethanol consumption. The stimulatory effect of glutamine being much less pronounced than the asparagine one and proline being devoid of action, the influence of ammonium chloride addition on ethanol consumption in the presence of these amino acids was studied. Ammonium chloride determines an enhancement of ethanol oxidation in these conditions, the results showing no apparent correlation between intracellular glutamate concentration and ethanol oxidation rate, contrarily to previous data. In hepatocytes from fed rats, only alanine, asparagine, cysteine, glycine, hydroxyproline, ornithine and serine increase ethanol oxidation, although to a lesser extent than in cells from starved rats.  相似文献   

20.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号