首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distribution and morphological diversity of virioplankton were determined in Lake Donghu which contains three trophic regions: hypertrophic, eutrophic and mesotrophic region. Virioplankton abundance measured by transmission electron microscope (TEM) ranged from 7.7 × 108 to 3.0 × 109 ml–1, being among the highest observed in any natural aquatic system examined so far. The spatial distribution of virioplankton was correlated significantly with chlorophyll a concentration (r = 0.847; P < 0.01) at the sampling sites in Lake Donghu. 76 morphotypes were observed. Most morphotypes have tails, belonging to Siphoviridae, Myoviridae and Podoviridae. The majority of tailed phages in the lake were Myoviridae. Morphotypes which were rarely reported, such as prolate-headed virus-like particles, lemon-shaped virus-like particle, and viruses resembling Tectiviridae and Corticoviridae were all observed in the lake. It is concluded that the high viral abundance might be associated with high density of phytoplankton including algae and cyanobacteria. There was high viral diversity in this eutrophic shallow lake. In addition, cyanophage represented an important fraction of the virioplankton community in Lake Donghu.  相似文献   

2.
Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml–1) and ciliates (6.1 cells ml–1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1–1h–1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria. Correspondence: C. Amblard.  相似文献   

3.
The relative importance of viral lysis and bacterivory as causes of bacterial mortality were estimated. A laboratory experiment was carried out to check the kind of control that viruses could exert over the bacterial assemblage in a non-steady-state situation. Virus-like particles (VLP) were determined by using three methods of counting (DAPI [4′,6-diamidino-2-phenylindole] staining, YOPRO staining, and transmission electron microscopy). Virus counts increased from the beginning until the end of the experiment. However, different methods produced significantly different results. DAPI-stained VLP yielded the lowest numbers, while YOPRO-stained VLP yielded the highest numbers. Bacteria reached the maximal abundance at 122 h (3 × 107 bacteria ml−1), after the peak of chlorophyll a (80 μg liter−1). Phototrophic nanoflagellates followed the same pattern as for chlorophyll a. Heterotrophic nanoflagellates showed oscillations in abundance throughout the experiment. The specific bacterial growth rate increased until 168 h (2.6 day−1). The bacterivory rate reached the maximal value at 96 hours (0.9 day−1). Bacterial mortality due to viral infection was measured by using two approaches: measuring the percentage of visibly infected bacteria (%VIB) and measuring the viral decay rates (VDR), which were estimated with cyanide. The %VIB was always lower than 1% during the experiment. VDR were used to estimate viral production. Viral production increased 1 order of magnitude during the experiment (from 106 to 107 VLP ml−1 h−1). The percentage of heterotrophic bacterial production consumed by bacterivores was higher than 60% during the first 4 days of the experiment; afterwards, this percentage was lower than 10%. The percentage of heterotrophic bacterial production lysed by viruses as assessed by the VDR reached the highest values at the beginning (100%) and at the end (50%) of the experiment. Comparing both sources of mortality at each stage of the bloom, bacterivory was found to be higher than viral lysis at days 2 and 4, and viral lysis was higher than bacterivory at days 7 and 9. A balance between bacterial losses and bacterial production was calculated for each sampling interval. At intervals of 0 to 2 and 2 to 4 days, viral lysis and bacterivory accounted for all the bacterial losses. At intervals of 4 to 7 and 7 to 9 days, bacterial losses were not balanced by the sources of mortality measured. At these time points, bacterial abundance was about 20 times higher than the expected value if viral lysis and bacterivory had been the only factors causing bacterial mortality. In conclusion, mortality caused by viruses can be more important than bacterivory under non-steady-state conditions.  相似文献   

4.
The chemical and biological conditions, and the bacteria-heterotrophic nanoflagellate (HNF) relationship were investigated in the vicinity of Funka Bay, southwest of Hokkaido, Japan during early spring 1999. At the time of sampling, chlorophyll a concentration, bacteria, phycoerythrin rich-cyanobacteria, and HNF abundance were in the following ranges: 0.3–3.6 g l–1, 2.5–5.6 × 105 cells ml–1, 0.6–1.2 × 103 cells ml–1, and 2.2–4.2 × 103 cells ml–1, respectively. Dissolved inorganic nitrogen, phosphate and silicate concentrations were in the ranges: 8.7–12.2 M, 0.9–2.0 M, and 21.6–25.5 M, respectively. Primary production ranged from 6.4 to 76.3 mg C m–3 d–1. Using water samples from regions of different productivity levels (in and outside bay), the bacteria - HNF relationship was uncoupled experimentally by the size-fractionation technique. Higher primary production (19.9 mg C m–3 d–1) in the bay supported higher bacterial growth rate (0.029 h–1). However, outside the bay both primary production (6.4 mg C m–3 d–1) and bacterial growth rate (0.007 h–1) were lower. The HNF growth rates and grazing rates were similar for both but by comparing both HNF grazing capacity and bacterial production, there was net decrease in bacterial abundance outside the bay and net increase inside the bay. The microbial parameters (rates and abundance) and the amount of carbon flow estimated through the phytoplankton – dissolved organic matter (DOM) – bacteria loop were different between the coastal station and the open ocean station. However HNF grazing and growth rates was similar for both stations.  相似文献   

5.
Inhibitory effect of garlic on bacterial pathogens from spices   总被引:2,自引:0,他引:2  
An unconventional technique for primary screening of bacterial susceptibility to garlic (Allium sativum Linn.), using a slice from its clove, was described. Aqueous extracts of garlic were found to possess a potent bacteriostatic principle against Gram-positive as well as Gram-negative foodborne bacterial pathogens. In agar medium, the minimum inhibitory concentrations (MICs) of garlic were 6–10 mg ml–1 for Bacillus cereus, 30–40 mg ml–1 for Staphylococcus aureus (excepting the isolate from garlic, where the MIC was 100 mg ml–1), 20–30 mg ml–1 for Clostridium perfringens, 10 mg ml–1 for Escherichia coli (30 mg ml–1 for the garlic isolate), 40–100 mg ml–1 for Salmonella, and 10–40 mg ml–1 for Shigella. It inhibited the growth of all these strains, which were resistant to some commonly used antibiotics. Most of the tested strains were resistant to penicillins, although sensitive to garlic. While the growth of B. cereus and Cl. perfringens was completely inhibited at 10 and 70 mg garlic, respectively, ml–1 test broth, their respective enterotoxin production ceased at 10 and 50 mg garlic ml–1.  相似文献   

6.
We studied the effect of different concentrations (0, 3, 6, 9 and 12 g l–1) of sodium chloride at one food level of Chlorella (1×106 cells ml–1) on competition between the rotifers B. rotundiformis and H. jenkinae, both of which were isolated from a saline lake. The population growth experiments were conducted for 3 weeks. Both the rotifer species did not survive beyond one week at a salinity of 0 g l–1. Regardless of salt concentration and the presence of a competitor, H. jenkinae reached higher densities than B. rotundiformis. When grown alone, both B. rotundiformis and H. jenkinae showed optimal peak population densities at the salinity of 6 and 9 g l–1. Since biomass wise, B. rotundiformis was larger than H. jenkinae, it showed a lower numerical abundance. Thus, the maximum peak population densities of B. rotundiformis and H. jenkinae recorded in this study were 107±3 and 203±28 ind. ml–1. The maximal rates of population increase for B. rotundiformis and H, jenkinae when grown alone were 0.264±0.003 and 0.274±0.004, respectively. Our results also indicated that B. rotundiformis and H. jenkinae coexisted better at a salinity of 6 and 9 g l–1 of sodium chloride while a salinity of 3 g l–1 favoured Hexarthra over B. rotundiformis. At 12 g l–1, both the rotifer species grown alone or together showed lower growth rates compared to those at lower salinity levels. Except 0 g l–1, in all other salinity treatments, H. jenkinae was a superior competitor to B. rotundiformis.  相似文献   

7.
Laboratory experiments were undertaken using Amonardia normani and Schizopera cf. compacta, two meiobenthic harpacticoid copepods commonly found in coastal lagoons. The first experiments were designed to determine if the phototrophic sulfur bacteria Chromatium gracile can be ingested by these copepods and at what concentrations. Egestion rate was used as an index of feeding rate. The response of the egestion rate, expressed in numbers of faecal pellets produced by copepod per day, as a function of bacterial concentration followed the functional model. A. normani attained constant feeding rates from the bacterial concentration of 1 × 107 cells ml–1 (5 µg C ml–1) onwards, S. cf. compacta attained constant feeding rates from 2.6 × 107 cells ml–1 (13 µg C ml–1) onwards. The faecal pellet volume changed significantly (p<0.05) between food concentrations for A. normani but not for S. cf. compacta (p>0.05). In order to investigate the effect of the phototrophic bacterial diet on the population dynamics of A. normani three groups of nauplii were maintained at 2 × 107 cells ml–1 and observed every day. The mortality of these nauplii was very high compared to those maintained on a diatom diet (Nitzschia constricta); only in one of the groups did some copepodites develop but no adults were ever observed. Adults fed on bacteria did not have different (p>0.05) survival rates compared to those fed on diatoms, nevertheless, the number of nauplii produced was significantly less (p<0.05) on the bacterial diet. These results lead us to suggest that although the phototrophic sulfur bacteria (Chromatium gracile) can be ingested by both copepod species it cannot sustain the full development of the A. normani population. Thus, a bloom of phototrophic sulfur bacteria does not seem to be a favourable situation for opportunistic benthic copepods to colonize eutrophic coastal lagoons after a dystrophic crisis.  相似文献   

8.
Alison Sartonov 《Hydrobiologia》1995,307(1-3):117-126
Laboratory experiments tested the hypothesis that a toxic strain of Microcystis aeruginosa decreases the ability of Daphnia pulex to interfere with Keratella cochlearis. To test a variety of conditions, juvenile and adult Daphnia were exposed to the cyanobacterium for different time periods prior to, and during the experiments. Adult Daphnia not only suppressed rotifers over successive two-day intervals, but also had a significant impact within a 24-hour period. However, the presence of Microcystis (5 × 105 cells ml–1) decreased the Daphnia effect in both experiments. Although juvenile Daphnia also significantly suppressed Keratella population growth, the presence of Microcystis (105 and 5 × 105 cells ml–1) caused a significant reduction in daphniid body size and decreased the ability of both nonacclimated and acclimated daphniids to suppress rotifers. Keratella inhalation and mortality are positively correlated with filtering rates and body size of Daphnia. Therefore, the feeding rates and size structure of a Daphnia population will determine its potential to interfere with vulnerable rotifers. In all experiments the presence of Microcystis significantly decreased the ability of Daphnia to interfere with this rotifer despite the fact that Keratella was also inhibited. In the field this effect might be augmented if Microcystis colonies are more easily ingested by cladocerans than by the rotifers.  相似文献   

9.
Microbial diversity, numbers, and metabolic activities in Minnesota peatlands were investigated using a variety of microbial enrichment and enumeration procedures together with radioisotopic measurements of microbial degradative processes. Minnesota peatlands were shown to contain large microbial populations of wide metabolic diversity. Direct counts of bacteria using epifluorescence microscopy indicated bacterial populations of about 108 ml–1 of peatland water, irrespective of depth. Radioisotopic most-probable-number (MPN) counts of heterotrophs able to mineralize14C-labeled substrates to14CO2 showed significant populations of glucose degraders (104–106 ml–1) as well as degraders of benzoate (102–103 ml–1), 2,4-dichlorophenoxyacetate (102–105 ml–1), and sphagnum (103–107 ml–1) in the various peatlands examined. The MPNs of NO3 reducers varied from 103–106 ml–1, SO4 reducers from 102–103 ml–1, methanogenic bacteria from 103–106 ml–1, and methane oxidizers from 103–104 ml–1, depending on sampling site and depth. Eighty pure cultures of aerobic bacteria and fungi were isolated from Minnesota peats. Most of those cultures tested were able to grow on at least 20 organic compounds (carbohydrates, aromatic molecules, hydrocarbons, etc.) as sole sources of carbon and energy. One isolate, aBacillus, was able to fix atmospheric N2. Several of the isolates were able to mineralize14C-labeled lignin.  相似文献   

10.
The short-term dynamics of virus-like particles (VLPs) abundance, bacterioplankton, ciliates and flagellates were analyzed in a small tropical lake, during a rainy day (June 9–10, 2003) and a dry day (February 18–19, 2004), with intervals of 3 h between the samplings. Frequent sampling in intervals of 15 min were conducted. During the rainy day, the VLP mean abundance was 7.0×108 mL−1 and bacterial density was 5.75×107 mL−1. During the dry day, VLP and bacterial mean were 5.78×108 and 4.1×107 mL−1, respectively. The virus/bacterium rate (VBR) varied from 11 to 18 on the rainy day and from 4 to 22 on the dry day. The density of VLP was higher during the night, especially on the dry day, suggesting a virucidal action of the solar radiation on them. When registered in intervals of 15 min, the densities were not associated with the fluctuations of bacteria or chlorophyll a (Chl a), but a strong negative correlation between VLP and protozooplankton was observed (Spearman: R=−0.71; p=0.04), possibly associated with the occurrence of viral lyses on these organisms. The variations of VBR in the system, indicate that the elevated densities and fluctuations of VLP is suggestive of an active and important participation of these biological entities in the dynamics of the microbial communities in the studied environment.  相似文献   

11.
Despite the fact that marine viruses have been increasingly studied in the last decade, there is little information on viral abundance and distribution on a global scale. In this study, we report on a global-scale survey covering the Pacific, Atlantic, and Indian Oceans on viral distribution using flow cytometry. Viruses were stained with the SYBR Green I, which targets only dsDNA viruses. The average viral abundance was 1.10±0.73×107 ml−1 in global surface oceans and decreased from the areas with high chlorophyll concentration (on average, 1.47±0.78×107 ml−1) to the oligotrophic subtropical gyres (on average, 6.34±2.18×106 ml−1). On a large-spatial-scale, viruses displayed significant relationships with both heterotrophic and autotrophic picoplankton abundance, suggesting that viral distribution is dependent on their host cell abundance. Our study provided a basin scale pattern of marine viral distributions and their relationship with major host cells, indicating that viruses play a significant role in the global marine ecosystem.  相似文献   

12.
The population growth pattern and related changes in both the nitrogen and phosphorus contents in the cell of the dinoflagellate Peridinium penardii (Lemm.) Lemm., which formed a freshwater red tide in a reservoir, were studied in situ. An exponential increase with time in population density was found. A specific growth rate of 0.25 d–1 was observed. The cellular content of phosphorus per cell decreased from 6.0 × 10–5 µg to 9.2 × 10–6 µg along with an increase in population density from 8.0 × 102 cells ml–1 to 2.5 × 104 cells ml–1. A prominent change in the cellular nitrogen did not occur. Decreasing cell content and continuous uptake of phosphorus were advantageous for P. penardii to form a freshwater red tide under P-limited conditions.  相似文献   

13.
Lv W  Cong W  Cai Z 《Biotechnology letters》2004,26(22):1713-1716
Nisin production by Lactococcus lactis subsp. lactisin fed-batch culture was doubled by using a pH feed-back controlled method. Sucrose concentration was controlled at 10 g l–1 giving 5010 IU nisin ml–1 compared to 2660 IU nisin ml–1 in batch culture.  相似文献   

14.
Red tides dominated by the harmful dinoflagellate Cochlodinium polykrikoides have caused annual losses of USD $5–60 million to the Korean aquaculture industry annually since 1995 and a loss of USD $3 million during a 1999 net-pen fish mortality event in Canada. In order to evaluate the potential to control C. polykrikoides red tides dominated by using mass-cultured heterotrophic protistan grazers, we monitored the abundance of Strombidinopsis jeokjo (a naked ciliate) and C. polykrikoides after mass-cultured S. jeokjo was introduced into mesocosms (ca. 60 l) deployed in situ and containing natural red tide waters dominated by C. polykrikoides. Water temperature, salinity, and pH, as well as the abundance of co-occurring other protists and metazooplankton were measured concurrently. To compare the growth and ingestion rates of S. jeokjo feeding on cultured versus natural populations of C. polykrikoides, we also monitored the abundance of cultured C. polykrikoides and S. jeokjo in bottles during laboratory grazing experiments. S. jeokjo introduced into the mesocosms grew well, effectively reducing natural populations of C. polykrikoides from approximately 1000 cells ml−1 to below 10 cells ml−1 within 2 days. The growth and ingestion rates of cultured S. jeokjo on natural populations of C. polykrikoides in the mesocosms for the first 30 h (0.72 day−1 and 51 ng C grazer−1 day−1) were 84% and 44%, respectively, of those measured in the laboratory during bottle incubations with similar initial prey concentrations. The calculated grazing impact of S. jeokjo on natural populations of C. polykrikoides suggests that large-scale cultures of this ciliate could be used for controlling red tides by C. polykrikoides in small areas.  相似文献   

15.
Density-dependent regulation of natural and laboratory rotifer populations   总被引:1,自引:1,他引:0  
Density-dependent regulation of abundance is fundamentally important in the dynamics of most animal populations. Density effects, however, have rarely been quantified in natural populations, so population models typically have a large uncertainty in their predictions. We used models generated from time series analysis to explore the form and strength of density-dependence in several natural rotifer populations. Population growth rate (r) decreased linearly or non-linearly with increased population density, depending on the rotifer species. Density effects in natural populations reduced r to 0 at densities of 1–10 l–1 for 8 of the 9 rotifer species investigated. The sensitivities of these species to density effects appeared normally distributed, with a mean r=0 density of 2.3 l–1 and a standard deviation of 1.9. Brachionus rotundiformis was the outlier with 10–100× higher density tolerance. Density effects in laboratory rotifer populations reduced r to 0 at population densities of 10–100 ml–1, which is 104 higher than densities in natural populations. Density effects in laboratory populations are due to food limitation, autotoxicity or to their combined effects. Experiments with B. rotundiformis demonstrated the absence of autotoxicity at densities as high as 865 ml–1, a much higher density than observed in natural populations. It is, therefore, likely that food limitation rather than autotoxicity plays a major role in regulating natural rotifer populations.  相似文献   

16.
In 1981–1982 Abert Lake had an area of 200 km2, with a mean depth of 2.5 m and a total dissolved salt concentration of 82 gl-1. The spatial distribution and abundance of the brine shrimp, Artemia salina, were monitored for 1981–1982. In 1981 during the midsummer months, with sampling primarily in the eastern side of Abert Lake, brine shrimp populations showed peak densities of 2–4 ind. 1-1. In 1982, peak abundance occurred in early July and ranged between 5–8 ind. 1-1. Lakewide estimates of brine shrimp derived from 14 collecting stations and assuming a uniform distribution over the lake resulted in estimates of lakewide abundance of 3 × 1011 adults with a total biomass of 7 × 106 kg. The major algal species in the lake was a benthic filamentous green alga (Ctenocladus circinnatus).  相似文献   

17.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2001,(1):63-69
Population growth of Lepadella patella was studied using Chlorella as the sole food at five concentrations ranging from 0.25 × 106 to 4.0 × 106 cells ml–1 at 25 °C for 22 days. The population densities increased with increasing algal concentration up to 1.0 × 106 cells ml–1. The population growth of L. patella was lower at algal concentration of 2.0 × 106 cells ml–1 and above. In a separate experiment, we tested the influence of the bdelloid rotifer Philodina roseola on the population growth of L. patella at different ratios of initial inoculation densities using 1.0 × 106 cells ml–1 of Chlorella at 28 °C. Despite lower initial inoculation densities compared with those in the controls, both L. patella and P. roseola showed higher peak abundances when grown together. The maximum peak abundance values recorded for L. patella and P. roseola were 830 and 230 ind. ml–1, respectively, at an inoculation ratio of 1:1.  相似文献   

18.
Calli ofNicotiana tabacum (tobacco) were treated with two dose ranges of aflatoxin B1 (0.1–2.0 µg ml–1 - low does; 5–25 µg ml–1 aflatoxin B1). The ability of calli to recover following 3 weeks of toxin exposure was also investigated. The I50 (50% inhibition) value for fresh mass accumulation was approximately 2 µg ml–1 AFB1. Fresh mass accumulation was significantly lower than the control value from 0.5 µg ml–1 AFB1. Following 3 weeks growth without a toxin source, the growth of calli up to and including 10 µg ml–1 AFB1, was significantly greater than control calli, indicating reversibility of the toxic effects. With increasing toxin concentration, chlorophyll content of callus was inhibited from 0.5 µg ml–1. Transfer to a toxin-free medium resulted in a degree of recovery (up to 0.5 µg ml–1). In the dose range 5–25 µg ml–1, the levels of chlorophyll were drastically reduced, with no recovery following AFB1 removal. Electron microscopy revealed a disruption of chloroplast structure as an early deteriorative event in AFB1 exposure of callus cells. Protein levels were less sensitive, with inhibition manifested only in the high dose range. Shoot development occurred at all concentrations, but was significantly inhibited from 5 µg ml–1 AFB1. Recovery following toxin removal was minimal at these higher AFB1 concentrations. The number of necrotic calli increased progressively from 5 µg ml–1 as toxin levels increased.  相似文献   

19.
Temporal and spatial changes of viral and bacterial abundance were examined in relation to environmental factors and hydrography at five stations between May 2000 and July 2001 in the brackish lake of Ganzirri (Sicily, Italy). Virioplankton abundance ranged from 5.26 × 104 to 7.54 × 108VLP ml–1 (on average 1.38 × 108particles ml–1) and was significantly higher at the three eutrophic stations located in the lake of Ganzirri (Stations 1, 2, and 3) than in the channel connecting the lake with the Straits of Messina. The virus-to-bacterium abundance ratio (VBR range, 0.4–117; average:14) showed the highest values in channel connecting the lake of Ganzirri with the meromictic lake of Faro. VBR values <1.0 were found in summer 2000 in relation with peculiar hydrographic constraints. Virioplankton distribution was dependent on salinity, and on dilution of the oligotrophic waters flowing from the Straits. Virioplankton was closely related with bacterioplankton indicating a close coupling between viruses and host cell abundance.  相似文献   

20.
Ecological problems of Lake Ladoga: causes and solutions   总被引:3,自引:3,他引:0  
We studied the outcome of competition between a large (Brachionus calyciflorus) and a small (Anuraeopsis fissa) rotifer species at five algal (Scenedesmus acutus) concentrations (0.5 × 106 to 40.5 × 106 cells ml–1) and with varying initial densities in mixed populations (100 to 0% of B. calcyciflorus or A. fissa), the combined initial biomass being 0.2 µg ml–1 in all test jars. Experiments were conducted at 28 ± 1 °C.Regardless of food concentration, B. calcyciflorus showed a greater increase in biomass than A. fissa, peak densities (mean ± standard error) at the lowest food concentration in the controls being 1.34 ± 0.31 µg dry weight ml–1 and 0.82 ± 0.08 dry weight ml–1, respectively. At the lower food concentrations, A. fissa displaced B. calyciflorus and vice versa at the higher food concentrations. At the intermediate food concentrations of 4.5 × 106 cells ml–1, B. calyciflorus outcompeted A. fissa only if its initial population density was three times higher. The rates of population growth in controls varied from 0.792 ± 0.06 d–1 to 1.492 ± 0.13 d–1 for B. calyciflorus and 0.445 ± 0.04 to 0.885 ± 0.01 for A. fissa depending on food level. When both species were introduced together, low food levels favoured higher abundance of A. fissa than B. calyciflorus, suggesting, in nature, it is likely that small Anuraeopsis colonize oligotrophic water bodies more successfully than larger Brachionus. The results also suggest that the outcome of competition depends not only on the size of the competing species and food availability but also on their colonizing density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号