首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have constructed a physical map of chromosome 11q13, using 54 DNA markers that had been localized to 11q13.1----q13.5 by means of somatic hybrid cell panels. Although the map has some gaps, it spans nearly 14 Mb and includes the region containing the gene responsible for multiple endocrine neoplasia type 1 (MEN1) and also the region that is amplified in several types of malignant tumors. As the estimated average distance between each locus is roughly 300 kb, the markers reported here will be valuable resources for construction of contig maps with yeast artificial chromosomes and/or cosmid clones. Furthermore, these clones will be useful in efforts to identify the MEN1 gene and in analyses of the amplification units present at 11q13 in certain tumors.  相似文献   

2.
We have isolated 68 new RFLP markers on human chromosome 6. Of these, 64 were localized on chromosomal bands by the fluorescent in-situ hybridization (FISH) method, 25 on the short arm and 39 on the long arm. Their distribution was uneven; the markers were localized predominantly in regions of R-positive banding. Eleven markers defined VNTR loci. This expanded collection of DNA markers will contribute to high-resolution linkage mapping of genes causing inherited disorders and will provide useful reagents for isolation of putative tumor-suppressor genes on chromosome 6 that appear to be involved in malignancies. Furthermore, the new markers will be guideposts for detailed linkage and physical maps of this chromosome.  相似文献   

3.
NotI and EagI boundary libraries were constructed for human chromosome 21. One hundred forty-seven clones were isolated from the somatic cell hybrid 72532X-6 and localized using a hybrid mapping panel. After identification of those clones, which were isolated more than once, as well as those probes derived from a previously unrecognized integrated non-chromosome-21 fragment, 58 individual boundary clones (plus 2 additional NotI-EcoRI clones isolated from a flow-sorted library) were localized to 11 separate regions. The distribution of these probes is highly nonrandom, with 50% of the clones located in the distal band 21q22.3. Two probes, Not50 and Eag101, map to regions in the very proximal long arm which may contain the gene responsible for familial Alzheimer's disease (AD1), and Not50 would appear to be more proximal than D21S16 (E9). Twenty-eight probes map to the region between superoxide dismutase (SOD1) and the ETS2 oncogene, which appears to contain genes responsible for many of the phenotypic features of Down syndrome. Twenty clones contain (GT)n repeats, as determined by hybridization to a CA polymer, and should provide additional highly polymorphic probes. Closure of gaps in the physical linkage map of chromosome 21 should be facilitated by the isolation of these probes, as they identify many of the unmethylated CpG-rich islands that have hindered pulsed-field gel analysis. They will also be useful in identifying a set of genes in proximity to NotI and EagI restriction sites, as well as conserved DNA sequences for comparative mapping studies.  相似文献   

4.
To obtain new RFLP markers on human chromosome 11 for a high-resolution map, we constructed a cosmid library from a Chinese hamster x human somatic hybrid cell line that retains only human chromosome 11 in a Chinese hamster genomic background. A total of 3,500 cosmids were isolated by colony hybridization with labeled human genomic DNA. DNA was prepared from 130 of these cosmid clones and examined for RFLP. In 62 of them, polymorphism was detected with one or more enzymes; four RFLPs were VNTR systems. All polymorphic clones were assigned to one of 22 intervals obtained by mapping on a deletion panel of 15 somatic hybrid cell lines containing parts of chromosome 11; 11 clones were finely mapped by in situ hybridization. Although RFLP markers were scattered on the whole chromosome, they were found predominantly in the regions of R-banding. These DNA markers will contribute to fine mapping of genes causing inherited disorders and tumor-suppressor genes that reside on chromosome 11. Furthermore, as one-third of the cosmid clones revealed a band or bands in Chinese hamster DNA, indicating sequence conservation, this subset of clones may be useful for isolating biologically important genes on chromosome 11.  相似文献   

5.
An alternative approach for the direct analysis of chromosome regions corresponding to economical traits on the basis of chromosome microdissection is described. Large fragment clones isolated with primer pairs designed from chromosome fragment-specific DNA sequences were localized by FISH to the scraped chromosome region of interest. The chromosome fragment-specific clones are a useful tool for the generation of region specific high density marker and gene maps and represent the source material for the development of a DNA contig including the economical trait.  相似文献   

6.
Y S Fan  R Sasi  C Lee  D Court  C C Lin 《Genomics》1992,14(2):542-545
Fifty cosmids have been mapped to metaphase chromosomes by fluorescence in situ hybridization under conditions that suppress signals from repetitive DNA sequences. The cosmid clones were isolated from a flow-sorted human X chromosome library. Thirty-eight of the clones were localized to chromosome X and 12 to autosomes such as chromosomes 3, 7, 8, 14, and 17. Although most of the cosmids mapped to the X chromosome appeared to be scattered along both the short and long arms, 10 cosmids were localized to the centromeric region of the chromosome. Southern blot analysis revealed that only two of these clones hybridized to probe pXBR-1, which detects the DXZ1 locus. In addition, 4 out of 5 cosmids mapped on chromosome 8 also localized on the centromeric region. While localization of X-specific cosmids will facilitate the physical mapping of the human X chromosome, cosmids mapped to the centromeric regions of chromosomes X and 8 should be especially useful for studying the structure and organization of these regions.  相似文献   

7.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

8.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

9.
We have explored the potential of irradiation-fusion gene transfer (IFGT) hybrids as a source of well-defined human chromosome fragments from which probes can be derived. Extensive characterization of the IFGT hybrid 4J4 with a full panel of markers from Chromosome (Chr) 6 showed that the human DNA content derives largely from 6p21.3 and 6q27. A cosmid library has been constructed from 4J4 DNA, and 370 recombinants containing human DNA have been isolated and overlapping clones ordered into 20 contigs. Regional localization of representative clones from each contig, determined by fluorescent in situ hybridization (FISH), places 13 contigs in 6q27 and 6 in 6p21.3. Preliminary screening of cDNA libraries with selected cosmids has identified two expressed sequences. Since there are a number of medically important genes in both these regions of human Chr 6 with several disease loci linked to the HLA-A region in 6p21.3 and various tumor suppressor genes to 6q27, this library will provide a valuable resource to aid the isolation of candidate genes for these diseases. In addition, unique markers for detailed physical and genetic mapping of these regions of human Chr 6 can be easily obtained.  相似文献   

10.
11.
Summary We have previously identified and regionally localized 195 chromosome-22-specific DNA markers. We now report restriction fragment length polymorphisms detected by 9 phage markers mapped to 22q11-q12, two cosmid clones mapped to 22q12-q13 and one plasmid mapped to 22q13-qter. These markers may be useful tools for mapping disease genes such as the NF2 locus, on chromosome 22.  相似文献   

12.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

13.
人Xp11.2区4.3MbYAC重叠群:大尺度限制图与CpG岛分析   总被引:1,自引:1,他引:0  
人Xp11.2区域具有重要的医学遗传学和基础遗传学价值,它包含很多遗传疾病基因,且至少包含一个逃避X染色体失活的位点,非常规的基化多态也有发现。我们利用这一区域已知的一系列DNA位标,从我们构建的YAC库中筛选出一系列YAC克隆。  相似文献   

14.
Analysis by molecular cloning of the human class II genes   总被引:3,自引:0,他引:3  
The HLA class II genes control immune responsiveness to defined antigens; they encode cell surface heterodimers composed of alpha and beta glycopeptides. Recently, cDNA and genomic clones encoding these chains have been isolated, which allows molecular analysis of the class II genes. cDNA clones encoding the alpha chain of the HLA-DR antigen as well as that of another HLA class II antigen have been identified and characterized by nucleotide sequence analysis. These clones have been used as probes to isolate additional class II alpha cDNA clones in cDNA libraries and to identify polymorphisms in genomic DNA. Polymorphic restriction sites have been localized within the HLA-DR alpha gene and used as genetic markers in the analysis of families and of disease (insulin-dependent diabetes mellitus) and control populations. In addition, cDNA clones encoding the DR beta and DC beta chains were used as hybridization probes to identify DNA polymorphism. cDNA clones encoding the DR gamma (Ii) chain have also been identified; unlike the DR alpha and DR beta loci, the DR gamma gene is located on some chromosome other than chromosome 6. The genetic complexity of the human class II alpha and beta loci, as revealed by analysis with cDNA and genomic clones, is greater than that of the murine class II genes. The extent of that complexity will be defined by future work in this area.  相似文献   

15.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

16.
Fluorescence in situ hybridization (FISH), using bacterial artificial chromosome (BAC) clone as probe, is a reliable cytological technique for chromosome identification. It has been used in many plants, especially in those containing numerous small chromosomes. We previously developed eight chromosome-specific BAC clones from tetraploid cotton, which were used as excellent cytological markers for chromosomes identification. Here, we isolated the other chromosome-specific BAC clones to make a complete set for the identification of all 26 chromosome-pairs by this technology in tetraploid cotton (Gossypium hirsutum L.). This set of BAC markers was demonstrated to be useful to assign each chromosome to a genetic linkage group unambiguously. In addition, these BAC clones also served as convenient and reliable landmarks for establishing physical linkage with unknown targeted sequences. Moreover, one BAC containing an EST, with high sequence similarity to a G. hirsutum ethylene-responsive element-binding factor was located physically on the long arm of chromosome A7 with the help of a chromosome-A7-specific BAC FISH marker. Comparative analysis of physical marker positions in the chromosomes by BAC-FISH and genetic linkage maps demonstrated that most of the 26 BAC clones were localized close to or at the ends of their respective chromosomes, and indicated that the recombination active regions of cotton chromosomes are primarily located in the distal regions. This technology also enables us to make associations between chromosomes and their genetic linkage groups and re-assign each chromosome according to the corresponding genetic linkage group. This BAC clones and BAC-FISH technology will be useful for us to evaluate grossly the degree to which a linkage map provides adequate coverage for developing a saturated genetic map, and provides a powerful resource for cotton genomic researches.  相似文献   

17.
Isolation and mapping of 75 new DNA markers on human chromosome 3.   总被引:6,自引:0,他引:6  
We have isolated and mapped 75 new DNA markers including 52 restriction fragment length polymorphism (RFLP) markers on human chromosome 3. Clones were mapped by nonisotopic in situ hybridization, in which discrete fluorescent signals can be detected on prometaphase R-banded chromosomes. Thirty-seven markers were mapped to each arm of chromosome 3, and one was localized to the centromere. Five markers defined variable number of tandem repeat (VNTR) loci. Although the 75 clones were scattered throughout the chromosome, they were concentrated in the R-positive bands. This physical map of chromosome 3 will contribute to the characterization of the chromosomal and molecular aberrations involved in renal cell carcinoma, small-cell lung cancer, and other malignancies and in single-gene disorders such as von Hippel-Lindau disease and autosomal dominant retinitis pigmentosa.  相似文献   

18.
Two hundred and twenty-three radiation hybrids retaining random fragments of human chromosome 16 were isolated during two successive experiments in HAT medium and screened with a total of 38 DNA probes, corresponding to anonymous DNA or gene sequences localized on chromosome 16. The presence of single or multiple human chromosomal fragments in a small subset of these hybrids was determined using in situ hybridization with total human DNA. The results confirm that individual radiation hybrids are often heterogeneous with respect to the retention and distribution of human fragments, as already suggested by their characterization with DNA probes. A number of these 223 radiation hybrids, whose detailed characterization has not been previously reported, represent a resource for the rapid isolation of new DNA markers or coding sequences from specific regions of chromosome 16 where human disease genes are already known to map.  相似文献   

19.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

20.
The gene responsible for multiple endocrine neoplasia type 2A (MEN 2A) has been localized to the pericentromeric region of chromosome 10. Several markers that fail to recombine with MEN2A have been identified, including D10Z1, D10S94, D10S97, and D10S102. Meiotic mapping in the MEN2A region is limited by the paucity of critical crossovers identified and by the dramatically reduced rates of recombination in males. Additional approaches to mapping loci in the pericentromeric region of chromosome 10 are required. We have undertaken the generation of a detailed physical map by radiation hybrid mapping. Here we report the development of a radiation hybrid panel and its use in the mapping of new DNA markers in pericentromeric chromosome 10. The radiation-reduced hybrids used for mapping studies all retain small subchromosomal fragments that include both D10S94 and D10Z1. One hybrid was selected as the source of DNA for cloning. One hundred five human recombinant clones were isolated from a lambda library made with pp11A DNA. We have completed regional mapping of 22 of those clones using our radiation hybrid mapping panel. Seven markers have been identified and, when taken together with previously meiotically mapped markers, define eight radiation hybrid map intervals between D10S34 and RBP3. The identical order is found for a number of these using either the radiation hybrid mapping panel or the meiotic mapping panel. We believe that this combination cloning and mapping approach will facilitate the precise positioning of new markers in pericentromeric chromosome 10 and will help in refining further the localization of MEN2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号