首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
l-[3H]Glutamate binding to synaptic plasma membranes from rat cerebral cortices was carried out at 2–4°C in 50 mM Tris-acetate buffer (pH 7.4) using a microfuge centrifugation method. Binding was increased by repeated freezing-thawing and washing in either crude or partially purified synaptic membranes. Scatchard analysis showed a single binding site (dissociation constant, KD = 697 nM; maximal binding capacity, Bmax = 7.5 pmol/mg protein) in four times distilled water washed crude synaptic membrane. After six times freezing-thawing and washing, a new high affinity site (KD1 = 26 nM, Bmax1 = 1.8 pmol/mg protein) appeared and the number of low affinity site was increased with no apparent change in affinity (KD2 = 662 nM, Bmax2 = 10.5 pmol/mg protein). l-[3H]Glutamate binding was inhibited by acidic amino acid analogues that interact with N-methyl-d-aspartate- and quisqualate-sensitive sites of glutamate receptors. Binding was marginally inhibited by kainate and l-2-amino-4-phosphonobutyrate. These results indicate that repeatedly frozen-thawed and washed synaptic plasma membrane is suitable for studying the subtypes and regulation of glutamate receptors.  相似文献   

2.
The subcellular distribution of kainic acid (KA) binding sites in rat brain has been studied using a microcentrifugation assay. KA did not bind to myelin or brain cytosol and had few or no binding sites in the nuclear fraction. However, it bound to microsomal components (K d =128–136 nM; 2.5–4.8 pmol/mg protein), purified synaptic plasma membranes (SPM) (K d =45–71 nM; 5.8–6.5 pmol/mg), and purified cell-body and intraterminal mitochondria (K d =11–31 nM; 0.4–1.1 pmol/mg). Bound KA could be totally displaced byl-glutamate orl-aspartate, but several putative antagonists of these amino acids (nuciferin, compound HA-966, 2-amino-4-phosphonobutyrate, and 2-amino-3-phosphonoproprionate) failed to displace KA or did so at very high concentrations (4 mM). Glutamic acid diethyl ester (GDEE) andd,l--aminoadipate (-AA) were more effective (IC50, 0.2–0.8 mM) and showed differential effects in their capacity to displace KA bound to the various subcellular fractions. Thus, GDEE only displaced 40–60% of the KA bound by SPM or mitochondria and did not prevent the binding of KA to microsomes. -AA, on the other hand, was more effective in preventing the binding of KA at high concentrations and displaced between 80 and 100% of the drug. Both compounds showed biphasic curves of KA displacement from synaptic plasma membranes and mitochondria. The overall results indicate the presence of multiple binding sites for KA in brain cells and suggest that KA does not act exclusively at synaptic glutamate receptors. The mechanism of KA action is most likely quite complex, and the drug probably acts at multiple binding sites affecting a number of processes.  相似文献   

3.
Receptors for porcine vasoactive intestinal peptide have been characterized in isolated epithelial cells of rat ventral prostate. The interaction of 125I-labelled VIP with cells was rapid, reversible, specific, saturable and dependent on temperature. Degradation of peptide and receptors was minimized at 15°C. At apparent equilibrium, the binding of 125I-labelled peptide was competitively inhibited by native VIP in the 1·10−10−10−7 M range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 4.0 nM and a low binding capacity (0.12 pmol VIP/mg cell protein), and a low-affinity class with a Kd = 17.8 nM and a high binding capacity (1.6 pmol VIP/mg cell protein). Chicken VIP and porcine secretin exhibited a 7-fold higher and a 7-fold lower affinity than porcine VIP for binding sites, respectively. Glucagon, Leu-enkephalin, Met-enkephalin and somatostatin were ineffective. The presence of high-affinity receptors for VIP together with previous reports on the occurrence of VIP-containing neurones innervating the male genitourinary tract strongly suggest that this peptide may be important in the physiological regulation of the functions of prostatic epithelium.  相似文献   

4.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

5.
We have compared the effect of ethanol, a membrane perturbant, on the muscarinic binding sites in neural membranes from a vertebrate (rat) and an insect (locust). The binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) to both rat and locust neural membranes was inhibited by ethanol at 10–500 mM concentrations; but this inhibition was greater in the locust. Ethanol (500 mM) increased the apparent dissociation constant (K d) of [3H]QNB binding to rat membranes from 0.13±0.01 nM in control to 0.20±0.02 nM; there was also an small but significant reduction in the number of binding sitesB max. In locust, 500 mM ethanol reduced theB max of [3H]QNB binding from 590±30 in control to 320±40 pmol/g protein; no significant alteration in theK D was detected. The dissociation rate constant (k off) of [3H]QNB increased from 0.020±0.003 in controls to 0.031±0.004 (min–1) in the presence of 500mM ethanol, the association rate constant (k on) did not change significantly. In locust, 500 mM ethanol did not affect eitherk on ork off. Competition experiments revealed that the binding affinities of both the agonist carbamylcholine and the antagonist atropine to the rat membranes were reduced in the presence of ethanol. In contrast, ethanol caused no alteration in the binding affinities of these ligands to the locust membranes. This differential effect of ethanol on rat and locust muscarinic binding suggests a difference in the hydrophobic domains and/or the membrane interactions of the muscarinic receptors in the two species.  相似文献   

6.
Saturable specific binding of glycine to synaptosomal membranes from plexiform layers of the retina has been described, which seems to correspond to the modulatory site on NMDA-receptors (26). Spermine inhibited specific [3H]glycine binding to membranes from synaptosomal fractions from the outer (P1) and the inner (P2) plexiform layers of 1–3 day-old chick retinas in a dose-dependent manner with an IC50 = 35 M for the P1 fraction and 32 M for the P2 fraction. Kinetic experiments and non-linear regression analysis of [3H]glycine-specific binding showed a Kd ~ 100–150 nM in both fractions, and a higher Bmax (4.11 ± 0.47 pmol/mg protein) for the inner plexiform layer compared to the outer plexiform layer (Bmax = 2.76 ± 0.25 pmol/mg protein). Strychnine-insensitive [3H]glycine binding was inhibited by 100 M spermine, due to a reduction in Bmax (P1 = 0.84 ± 0.16 pmol/mg protein; P2 = 0.81 ± 0.16 pmol/mg protein) without affecting the Kd. Association and dissociation constants in the absence and presence of 50 M spermine remained unchanged. Results demonstrate the presence of a single modulatory site for spermine on NMDA receptors, in both synaptic layers of the chick retina.  相似文献   

7.
Abstract

The subcellular localization of 3H-imipramine binding sites in brain was investigated with the aim of learning about the possible mechanism of action of this antidepressant. The rat cerebral cortex was submitted to a systematic fractionation and both the nuclear and the synaptosomal fractions were purified by gradient centrifugation. Using a centrifugation assay for the binding, we found that the synaptosomal membranes had the highest specific activity and showed two binding sites, one of high affinity with a KD of 14 nM and a Bmax of 3.1 pmol per mg protein, and another of lower affinity with a KD of 99 nM and a Bmax of 14.2 pmol per mg protein. Purified nuclei have a lower specific activity than the synaptosomal membrane, specially when expressed per g tissue. On the other hand, myelin and capillaries have few binding sites. Synaptosomal membranes were treated with 0.1, 0.2 and 0.5% Triton X-100 to dissolve the pre- and post-synaptic membrane and submitted to 3H-imipramine binding in the presence of the detergent or after washing of the residue. The results obtained suggest that although most 3H-imipramine binding sites are localized pre-synaptically, a certain proportion are post-synaptic. These findings are discussed in relation to previous studies from this laboratory on the localization of central receptors with reference to the synaptic region and to the antidepressant action of imipramine.  相似文献   

8.
[3H]Kainate binding to membrane homogenates and detergent extracts prepared from Xenopus central nervous system was evaluated in 50 mM Tris-citrate buffer, pH 7.0. In membrane fragment preparations, [3H]kainate bound with a KD of 54.4 nM to a large number of sites (Bmax = 27.8 pmol/mg of protein). Up to 80% of the total number of membrane-bound binding sites were solubilised using the nonionic detergent n-octyl-beta-D-glucopyranoside. Values for the KD of [3H]kainate for solubilised binding sites were 46.0 nM and 53.6 nM derived from equilibrium and kinetic binding experiments, respectively. Competitive binding studies revealed that a variety of ligands had similar Ki values in both membranes and solubilised extracts, with domoate and kainate being the most potent inhibitors of [3H]kainate binding. The dissociation rate of [3H]kainate from solubilised binding sites was 0.022 min-1. The binding component migrated in sucrose density gradients in a single 8.6S peak. These results demonstrate that the kainate receptor in Xenopus central nervous system, although similar to the [3H]kainate binding site from goldfish brain, differs in a number of important respects. In particular, the slower dissociation rate and higher affinity of [3H]kainate suggest that Xenopus provides the most convenient model system yet investigated for biochemical analysis of kainate receptors.  相似文献   

9.
To investigate the, interaction between -aminobutyric acid (GABA) and benzodiazepine (BZD) receptor sites during development, the time-course of appearance of flunitrazepam (FNZ) binding sites and their pharmacological characterization were studied in developing chick optic lobe. At the earliest stage examined, embryonic day (Ed) 12, the receptor density was 30.9 % (0.05±0.01 pmol/mg protein) of that found in the chick optic lobes of adult chicks. The adult value was achieved on Ed 16 (0.16±0.01 pmol/mg protein). After this stage there was a sharp and transient increase in specific [3H]FNZ binding of about two-fold reaching a maximal value between hatching and the postnatal day (pnd) 2 (0.33±0.01 pmol/mg protein). Scatchard analysis at different stages of development revealed the presence of a single population of specific FNZ binding sites. The increase in [3H]FNZ binding during development was due to a large number of binding sites while their affinity remained unchanged. Competition experiments in the chick optic lobe revealed that the order of potency for displacement of specific [3H]FNZ binding paralleled the pharmacological potency of the BZDs tested. The IC50 s for clonazepam, flunitrazepam, Ro 15-1788 and chlordiazepoxide were 3.02, 4.30, 0.32, and 4778.64 nM respectively. Ro 5-4864, a potent inhibitor of BZD binding to peripheral tissues, had no effect on specific [3H]FNZ binding indicating that only central BZD binding sites are present in the chick optic lobe. The peak of maximal expression of BZD receptor sites precedes in 5–6 days the peak of GABA receptor sites indicating a precocious development of BZD receptor sites. The different appearance of both peaks may represent important events during development probably related to synaptogenesis.  相似文献   

10.
The binding characteristics of [3H]-NPVF and [3H]-EYF, the two first tritiated probes for the respective labelling of NPFF1 and NPFF2 receptors, are presented. In membranes from CHO cells transfected with the human NPFF1 receptor, [3H]-NPVF labelled one class of binding sites with a high affinity (Bmax = 4 pmol/mg protein, Kd = 2.65 nM). In membranes from CHO cells transfected with the human NPFF2 receptor, [3H]-EYF labelled one class of binding sites with a high affinity (Bmax = 16 pmol/mg protein, Kd = 0.54 nM). Both radioligands exhibited time-dependent binding, low (10–20%) non-specific binding and poor cross-reactivity towards the related receptor subtype. The potency of different NPFF ligands to displace [3H]-NPVF and [3H]-EYF binding profiles was in good agreement with the profile previously measured by using 125I-probes (NPFF1 receptor: NPVF ≥ 1DMe = SPA-NPFF > NPFF = SQA-NPFF = QFW-NPSF > NPSF > RF9; NPFF2 receptor: SPA-NPFF > > SQA-NPFF = QFW-NPSF = 1DMe = NPFF  NPSF = NPVF > RF9). Therefore, [3H]-NPVF and [3H]-EYF are new valuable tools for performing binding on NPFF receptors.  相似文献   

11.
In order to further analyze the development of glutamatergic pathways in neuronal cells, the expression of excitatory amino acid receptors was studied in a model of neurons in primary culture by measuring the specific binding of L-[3H]glutamate under various incubation conditions in 8-day-old intact living neurons isolated from the embryonic rat forebrain, as well as in membrane preparations from these cultures and from newborn rat forebrain. In addition, the receptor responsiveness to glutamate was assessed by studying the uptake of tetraphenylphosphonium (TPP+) which reflects membrane polarization. In the presence of a potent inhibitor of glutamate uptake, the radioligand bound to a total number of sites of 36.7 pmol/mg protein in intact cells incubated in a Tris buffer containing Na+, Ca2+, and Cl, with a Kd around 2 M. In the absence of the above ions, [3H]glutamate specific binding diminished to 14.2 pmol/mg protein with a Kd-value of 550 nM. Under both of the above conditions, similar Kd were obtained in membranes isolated from cultures and from the newborn brain. However, Bmax-values were significantly lower in culture membranes than in intact cells or newborn membranes. Displacement studies showed that NMDA was the most potent compound to inhibit [3H]glutamate binding in membranes obtained from cultured neurons as well as from the newborn brain, whereas quisqualate, AMPA, kainate andtrans-ACPD were equally effective. According to these data and to the ionic dependence of glutamate binding, it was concluded that cultured neurons from the rat embryo forebrain express various glutamate receptor subtypes, mainly L-AP4 and NMDA receptors, with characteristics close to those in the newborn brain, and which display functional properties since a transient cell exposure to glutamate led to a 70% inhibition of [3H]TPP+ uptake.  相似文献   

12.
The binding of [3H]kainate to goldfish brain membrane fragments was investigated. Scatchard analysis revealed a single class of binding sites in Tris-HCl buffer with a Kd of 352 nM and a Bmax of 3.1 pmol/mg wet weight. In Ringer's saline, [3H]kainate bound with a Bmax of 1.8 pmol/mg wet weight and a Kd of 214 nM. Binding in Ringer's saline, but not Tris-HCl buffer, displayed positive cooperativity with a Hill coefficient of 1.15. The [3H]kainate binding sites were solubilized in Ringer's saline using the nonionic detergent n-octyl-beta-D-glucopyranoside. Approximately 30-50% of the total number of membrane-bound binding sites were recovered on solubilization. The Kd of [3H]kainate for solubilized binding sites was approximately 200 nM. The rank order of potency for glutamatergic ligands at inhibiting [3H]kainate binding was identical and the competitive ligands had similar Ki values in both membranes and solubilized extracts. In membrane preparations, [3H]kainate displayed a two component off-rate with koff values of 0.97 min-1 and 0.07 min-1; in solubilized extracts, however, only a single off-rate (koff = 0.52 min-1) was observed. The hydrodynamic properties of n-octyl-beta-D-glucopyranoside solubilized [3H]kainate binding sites was investigated by sucrose density centrifugation. A single well defined peak was detected which yielded a sedimentation coefficient of 8.3 S. The results presented in this report suggest that goldfish brain may provide an ideal system in which to study kainate receptor biochemistry.  相似文献   

13.
Abstract: Membranes from adult chicken brain have high-affinity binding sites for N6-cyclohexyl[3H]adenosine (CHA) (KD= 4 nM, Bmax = 0.6 pmol/mg protein). This CHA binding could be attributed to adenosine receptors of the A1 type, since substituted adenosine analogs, e.g. N6-(l -2-phenylisopropyl)adeno sine (IC50 = 60 nM), were very potent displacers. Binding sites for 1,3-diethyl- 8-[3H]phenylxanthine (DPX) in adult brain membranes have a moderate affinity (KD= 50 nM, Bmax = 1.5 pmol/mg). The association of DPX with these sites could be completely displaced by 8-phenyltheophylline (IC50= 300 nM) and other xanthines, but only 45% of specific DPX binding could be displaced by phenylisopropyladenosine. This suggests that about half of DPX sites are putative A1 receptors and the other half are of the A2 type. Primary cultures of pure glial and neuronal cells from chick embryo brain were also examined for adenosine receptors. Specific binding of CHA could not be detected in these preparations, but both glial and neuronal membranes have specific sites for DPX. At a [3H]DPX concentration of 20 nM, specific binding was 50% higher (per mg protein) in glial than in neuronal membranes. The maximum binding of DPX to glial membranes (Bmax= 1.6 pmol/mg) was comparable to values for adult brain, but the glial affinity (KD= 90 nM) was somewhat less. Phenylisopropyladenosine was able to displace less than 20% of the total glial sites for DPX. This finding was in accord with the lack of CHA sites and demonstrates that A1 receptors make little contribution to DPX binding in glial membranes. In decreasing order of potency, 8-phenyltheophylline, CHA, theophylline, caffeine, and 3-isobutyl-I-methylxanthine completely displace DPX association with glia. DPX binding to glial membranes thus appears due to a single class of receptors, which may prove to be of the A2 type.  相似文献   

14.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

15.
The present study tests the hypothesis that hypoxia alters the high-affinity kainate receptors in fetal guinea pig brain. Experiments were conducted in normoxic and hypoxic guinea pig fetus at preterm (45 days of gestation) and term (60 days of gestation). Hypoxia in the guinea pig fetus was induced by exposure to maternal hypoxia (FiO2=7%) for 60 min. Brain tissue hypoxia in the fetus was documented biochemically by decreased levels of ATP and phosphorreatine. [3H]-Kainate binding characteristics (Bmax=number of receptors, Kd=dissociation constant) were used as indices of kainate receptor modification. P2 membrane fractions were prepared from the cortex of normoxic and hypoxic fetuses and were washed six times prior to performing the binding assays. [3H]kainate binding was performed at 0°C for 30 min in a 500 l medium containing 50 mM Tris-HCl buffer, 0.1 mM EDTA (pH 7.4), 300 g protein and varying concentrations of radiolabelled kainate ranging from 1 to 200 nM. Non-specific binding was determined in the presence of 1.0 mM glutamate. During brain development from 45 to 60 days gestation, Bmax value increased from 330±16 to 417±10 fmoles/mg protein; however, the Kd was unchanged (8.2±0.4 vs 8.8±0.5 nM, respectively). During hypoxia at 60 days, the Kd value significantly increased as compared to normoxic control (15.5±0.7 vs 8.8±0.5 nM, respectively), whereas the Bmax was not affected (435±12 vs 417±10 fmol/mg protein, respectively). At 45 days, hypoxia also increased the Kd (11.9±0.6 vs 8.2±0.4 nM) without affecting the Bmax (290±15 vs 330±16 fmol/mg protein, respectively). The results show that the number of kainate receptors increase during gestation without change in affinity and demonstrate that hypoxia modifies the high-affinity kainate receptor sites at both ages; however the effect is much stronger at 60 days (term). The decreased affinity of the site could decrease the kainate receptor-mediated fast kinetics of desensitization and provide a longer period for increased Na+-influx, leading to increased accumulation of intracellular Ca2+ by reversal of the Na+–Ca2+ exchange mechanism. In addition, Kd values for kainate-type glutamate receptor sites are 30–40 fold lower (i.e. higher affinity) than those for NMDA-displaceable glutamate sites. The higher affinity suggests that the activation of the kainate-type glutamate receptor during hypoxia could precede initiation of NMDA receptormediated excitotoxic mechanisms. We propose that hypoxia-induced modification of the high affinity kainate receptor in the fetus is a potential mechanism of neuroexcitotoxicity.  相似文献   

16.
A saturable reversible binding to membranes from rat retina has been found forl-[3H]lysine. Specific binding is time, temperature and protein concentration-dependent, and shows stereospecificity. The best computer fits of the experimental data are obtalned with a receptor medel based on two independent binding sites, of which only one site with a Kd value of 229.4±14.23 nM and a Bmax of 2.04 ±0.11 pmol/mg protein could be characterized satisfactorily. Several compounds included putative neurotransmitters have moderate or no affinity forl-lysine binding sites. A different pattern of distribution ofl-[3H]lysine binding sites is observed among various regions of the brain, with the highest density in the occipital cortex, and the lowest density in ponsmedulla.The existence of binding sites in rat retinal membranes forl-lysine, as well as in the areas involved in the visual pathway, suggests a role for this amino acid in the physiological mechanism of the visual function.  相似文献   

17.
A radioiodinated derivative of OS2 (125I–OS2), a neurotoxic monochain phospholipase A2 isolated from taipan venom, was previously found to bind to a specific brain membrane receptor with very high affinity.125I–OS2 is now used to identify the properties of neurotoxic phospholipase receptors in other tissues. Heart, skeletal muscle, kidney, lung, liver, pancreas, and smooth muscle membranes also contain high-affinity binding sites for toxic phospholipases A2. In most tissues, two different types of receptor sites have been characterized for125I–OS2 with Kd1 and Kd2 values in the 1–5 pM and the 10–50 pM range respectively. Whereas all receptors are similar in the different tissues in terms of their affinity for125I–OS2, maximal binding site capacities were very different, varying from 1.4 pmol/mg of protein in brain to 0.01 pmol/mg of protein in pancreaas. In brain, heart, and skeletal muscle, receptor densities vary with in vivo development. Affinity labeling experiments have identified the subunit composition of OS2 receptors and indicated that these receptors do not have identical structures in the different tissues. Binding competition studies with OS2 and other toxic phospholipases showed tissue-dependent pharmacological profiles. All these results taken together suggest the existence of a family of receptors for neurotoxic phospholipases.The abbreviations used are PLA2 phospholipase A2 - DSS suberic acid bis-N-hydroxysuccinimide ester - EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid - SDS sodium dodecyl sulfate - OS1 Oxyuranus scutellatus scutellatus toxin 1 - OS2 Oxyuranus scutellatus scutellatus toxin 2 Special issue dedicated to Dr. Lawrence Austin.  相似文献   

18.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

19.
Abstract: [3H]Kainate bound to chick cerebellar membranes with a K D of 0.6 μ M and with an exceptionally high B max of 165 pmol/mg of protein. In octylglucoside-solubilised extracts, the affinity of [3H]kainate was reduced ( K D= 2.7 μ M ), but the B max was relatively unchanged (130 pmol/mg of protein). The rank potency of competitive ligands was domoate > kainate > 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) > glutamate. Binding sites for α-[3H]amino-3-hydroxy-5-methylisoxazolepropionate ([3H]AMPA) were much less abundant, with K D and B max values in membranes of 86 n M and I pmol/mg of protein, respectively. The affinity of [3H]AMPA binding was also reduced on solubilisation ( K D= 465 n M ), but there was an increase in the B max (1.7 pmol/mg of protein). Quisqualate and CNQX were the most effective displacers of [3H]AMPA binding, but kainate was also a relatively potent inhibitor. However, in contrast to the displacement profile for [3H]kainate, domoate was markedly less potent than kainate at displacing [3H]AMPA. These results suggest that [3H]AMPA binds to a small subset of the kainate sites that, unlike the majority of the [3H]kainate binding protein, which has been reported to be located in the Bergmann glia, may represent neuronal unitary non- N -methyl-D-aspartate receptors.  相似文献   

20.
1. A total particulate fraction of chick cerebellar membranes, obtained by a simple method, has been found to specifically bind [3H]kainic acid. Non-neuronal tissue, like chick liver, does not show any appreciable specific binding under the same experimental conditions. 2. Specific [3H]kainic acid binding to chick cerebellar membranes increases linearly with tissue concentration, reaches the binding equilibrium almost instantaneously and is pH and temperature dependent. 3. Specifically bound [3H]kainic acid is displaced by suitable concentrations of unlabelled kainic acid, L-glutamic acid and other excitatory amino acid analogues, both agonist and antagonist. This pharmacological pattern agrees with the general pharmacological properties of kainic acid receptors. 4. Saturation kinetic studies of kainic acid binding sites show one single binding mode with an apparent dissociation constant KD = 278 nM and a maximum number of binding sites of 187 pmoles/mg of protein. 5. In view of the mentioned data and the high amount of receptor sites found in chick cerebellar membranes, as compared with related values in rat cerebellum, we suggest that these receptors play a different physiological role or that they have a different cellular localization in chick and rat cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号