首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

2.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

3.
In response to the ovarian secretion of progesterone and estrogen during early pregnancy, the mammalian uterus develops the capacity to perform complex cellular activities which occur before and after blastocyst implantation. Luminal epithelial cells participate in regulation of the metabolism of the blastocyst through the control of its humoral environment, provide an appropriate matrix for changes to occur at the interface between trophoblast and epithelium, and appear to transmit information from the blastocyst to the underlying stroma to initiate decidualization. With the completion of these functions during implantation in rodents, the epithelial cells self-destruct and are removed by phagocytic activity of the trophoblast. Control of both the endocytotic and secretory activity of luminal epithelial cells and their eventual self-destruction would require regulation of the Golgi-endoplasmic reticulum-lysosomes system within these cells. Progesterone secretion during early pseudo-pregnancy increases levels of cathepsin D, a lysosomal proteinase, in luminal epithelial cells by increasing the rate of enzyme synthesis. Progesterone pretreatment of ovariectomized rats followed by estradiol treatment results in the development of uterine sensitivity to deciduogenic stimuli. The number of proteins which are synthesized by luminal epithelial cells in response to estradiol to achieve this sensitivity has been determined. Epithelial cytosol proteins from rats treated with medroxyprogesterone acetate (3.5 mg sc) or medroxyprogesterone acetate plus estradiol (200 ng sc) were separated by two dimensional polyacrylamide gel electrophoresis. The synthesis of two proteins increased after 8 h of estradiol treatment and the synthesis of another three was increased by 12 h. The increased synthesis of these proteins could be related to changes in the capacity of the luminal epithelial cell for prostaglandin synthesis. The epithelial capacity for prostaglandin synthesis increases during pseudopregnancy to maximum levels at the time of maximum sensitivity to deciduogenic stimuli. Epithelial prostaglandin synthetic capacity may also depend upon the accumulation of prostaglandin precursors within these cells. Estradiol treatment of medroxyprogesterone acetate pretreated ovariectomized rats increased the arachidonic acid content and composition of epithelial phosphatidyl choline but the increases were not statistically significant. These changes in protein and lipid synthesis controlled by progesterone and estrogen would appear to contribute to the cellular activities of the luminal epithelium during early pregnancy.  相似文献   

4.
The coagulating gland of male rodents is part of the prostatic complex. Various mechanisms of secretion have been postulated, in part because organelles commonly involved in the secretory process possess unusual features, such as extreme distension of the rough endoplasmic reticulum. In the present study, the pathway, kinetics, and mode of secretion in the coagulating gland of the mouse were studied by electron microscope autoradiography at intervals between 5 min and 8 h after administration of 3H-threonine. The percentage of grains associated with the rough endoplasmic reticulum was initially high and generally decreased throughout the experiment, while a pronounced rise in the proportion of grains associated with the Golgi apparatus and secretory granules was observed 6 h after injection of precursor. In addition, there was a smaller elevation in the percentage of grains over the Golgi apparatus and secretory granules between 1 and 4 h, and radioactive material first reached the lumen of the gland 4 h after injection of the precursor. Although the general pathway of intracellular transport of secretory protein resembles that in other cells, the results indicate that there are several unusual aspects to the secretory process in the coagulating gland. First, the rate of transport was markedly slower than in most other exocrine gland cells, since the bulk of the labeled protein did not reach the Golgi apparatus and secretory granules until 6 h after administration of precursor. This reflected prolonged retention of secretory products in the endoplasmic reticulum. Second, in addition to the major bolus of labeled material that traversed the cells at about 6 h, a smaller wave of radioactivity appeared to pass through the Golgi apparatus and secretory granules and reach the lumen earlier, within the first few hours after the injection. Finally, the primary mode of secretion in the coagulating gland appears to be merocrine because the secretory granules contained much labeled protein.  相似文献   

5.
The effects of vitamin A deprivation on the tracheal epithelium of young hamsters were investigated. Colchicine was administered 6 h prior to death to induce metaphase arrest, thus making it possible to quantify the mitotic rates of basal cells and secretory (mucous) cells in the epithelium. Blood samples were taken from all hamsters, and liver samples from some, in order to measure serum and tissue levels of vitamin A. Age-matched controls were compared with the following groups of hamsters maintained on a vitamin A deficient diet: pre weight plateau animals (those gaining weight), weight plateau-early weight loss animals (those maintaining approximately the same weight for 3 or 4 days, followed in some cases by a loss of weight for 3 or 4 days), and prolonged weight loss animals (those showing a loss of weight for 5 or more days). Four week old hamsters in a pre weight plateau had undetectable amounts of vitamin A in their livers and declining levels in their serum, whereas 4 1/2 week old hamsters still gaining weight had barely detectable levels of vitamin A in their serum. Nevertheless, the tracheal epithelium of these animals was not different from controls in appearance, proportions of different cell types, mitotic rates of secretory and basal cells, or in the number of cells per millimeter of basement membrane (cell density). Vitamin A was undetectable in the serum and livers of hamsters in the weight plateau-early weight loss stage. At this time the tracheal epithelium showed minimal morphological change, with small focal areas of epidermoid metaplasia in some animals. The tracheas of animals in early weight loss were smaller than tracheas in the control group, and there was a trend towards an increase in the number of epithelial cells per millimeter basement membrane. Cell types in the minimally changed epithelium appeared nearly normal, but there was an increase in the proportion of basal cells, and an absence (or near absence) of division in both basal and secretory cells. Tracheal rings from hamsters in the prolonged weight loss stage were lined by a cornifying metaplastic epidermoid epithelium. Our findings demonstrate that barely detectable levels of vitamin A in the serum are sufficient to maintain normal growth and differentiation of hamster tracheal epithelium (late pre weight plateau stage). When vitamin A serum levels fall below detectable limits the animals enter the weight plateau-early weight loss stage. This stage is accompanied by an inhibition of tracheal epithelial cell growth, although nearly normal cellular differentiation is maintained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare. Excessive cholesterol is more common problem. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases.  相似文献   

7.
The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain- deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.  相似文献   

8.
Four adult Romney rams were utilized in a study of LH and testosterone secretory responses following intravenous administration of GnRH by continuous infusions over 8 h (total doses were 12.5, 50 and 200 μg) or by single rapid injections (doses were 3.1, 12.5, 50 and 200 μg). In the former case infusions of sterile saline were made in control experiments. Blood samples were collected via jugular catheters at intervals during and for 7 h after GnRH infusion, and for 4 h following GnRH injection. Plasma LH and testosterone concentrations were measured by specific radioimmunoassays.Each infusion of GnRH resulted in the secretion of LH with peak levels being reached within 1 – 3 h of commencing the experiment, then levels decreased slowly despite continued infusion. Plasma testosterone levels rose subsequent to the LH elevation and continued to be elevated after completion of the GnRH infusion. Each GnRH injection resulted in a rapid and marked elevation of plasma LH concentrations to a peak within 15 – 20 min. Higher GnRH doses (50 and 200 μg) generally resulted in a second peak occurring approximately 1.5 – 2 h later. Testosterone levels rose subsequent to each LH elevation.  相似文献   

9.
Summary Horseradish peroxidase (HRP) was administered intravenously to mice by bolus injection. The subsequent uptake and fate of the HRP by the lateral and basal cell surfaces of resting and stimulated gallbladder epithelial cells was followed by light and electron microscopy. At 10 min after injection, HRP was visible in the lamina propria of the gallbladder and within 20 min of injection, HRP had permeated the basement membrane and had entered the lateral intercellular space, extending as far as the apical tight junction. Over the following 30 min, there was evidence of vesicular epithelial HRP uptake and 1 h after injection, HRP was visible in epithelial secretory granules within the lumen of the gallbladder and apical transport vesicles. These data provide evidence of a blood-to-bile transport pathway which could represent an important route of entry to bile by various blood-borne macromolecules.  相似文献   

10.
To identify intracellular calcium pools that may be involved in the secretory process in prolactin (PRL) cells, hemi pituitaries were incubated in medium containing 10(-6) M dopamine, 5 mM cyclic cAMP (experimentals), or in medium alone (controls) and then processed for electron microscopy using potassium pyroantimonate to localize intracellular calcium. PRL in the medium was measured by radioimmunoassay. The concentration of antimonate associated with mitochondria, Golgi saccules, and secretory granules was estimated. Dopamine inhibition of PRL secretion (> 80% at 1, 2, 3 h) resulted in accumulation of secretory granules in all stages of maturation and dilation of Golgi saccules at 2 and 3 h, accompanied by increased mitochondria antimonate and increased Golgi-associated antimonate. Cyclic AMP stimulation of secretion (635% at 5 min., declining to 34% at 1 h) resulted in marked exocytosis at 5 and 15 min., declining after 30 min. Mitochondrial antimonate decreased after 30 min. Stimulated cells exhibited numerous coated membrane structures at or near exocytotic pits and an amassing of microvesicles at the margin of the Golgi apparatus. Although some secretory granules consistently exhibited reactivity to antimonate (unchanged by inhibition or stimulation), plasma membrane, and granule membrane translocated to the plasma membrane during exocytosis, were not reactive.  相似文献   

11.
In cultured human fibroblasts we observed that monensin, a Na+/H+-exchanging ionophore, (i) inhibits mannose 6-phosphate-sensitive endocytosis of a lysosomal enzyme, (ii) enhances secretion of the precursor of cathepsin D, while inhibiting secretion of the precursors of beta-hexosaminidase, (iii) induces secretion of mature beta-hexosaminidase and mature cathepsin D, and (iv) inhibits carbohydrate processing in and proteolytic maturation of the precursors remaining within the cells; this last effect appears to be secondary to an inhibition of the transport of the precursors. If the treated cells are transferred to a monensin-free medium, about half of the accumulated precursors are secreted, and the intracellular enzyme is converted into the mature form. Monensin blocks formation of complex oligosaccharides in lysosomal enzymes. In the presence of monensin, total phosphorylation of glycoproteins is partially inhibited, whereas the secreted glycoproteins are enriched in the phosphorylated species. The suggested inhibition by monensin of the transport within the Golgi apparatus [Tartakoff (1980) Int. Rev. Exp. Pathol. 22, 227-250] may be the cause of some of the effects observed in the present study (iv). Other effects (i, ii) are rather explained by interference by monensin with the acidification in the lysosomal and prelysosomal compartments, which appears to be necessary for the transport of endocytosed and of newly synthesized lysosomal enzymes.  相似文献   

12.
The lining epithelium of secretory end pieces and central glandular duct in the seminal vesicle of the water buffalo (Bubalus bubalis) consists of columnar principal and small polymorphous basal cells. A system of intercellular and even intracellular canaliculi enlarges the secretory surface. The most prominent organelle of the columnar principal cells is the granular endoplasmic reticulum, forming large aggregates of parallel lamellae. Using antibodies against the neural cell adhesion molecule L1 and the neural marker protein gene product 9.5 (PGP 9.5), the innervation pattern of the seminal vesicle becomes evident. The muscular layer surrounding the propria contains a dense network of unmyelinated fibers. Thicker bundles traverse the muscular layer to reach the propria. Around glandular secretory tubules and below the epithelial lining of the glandular duct a tightly woven subepithelial plexus is observed which sends short penetrating branches into the basal zone of the epithelium. These intraepithelial nerves are devoid of Schwann cells and basal lamina (naked axons) and are situated within the intercellular spaces between principal and basal cells. Acetylcholinesterase histochemistry with short (1-2 h) incubation times, dopamine-beta-hydroxylase immunohistochemistry and ultrastructural study of transmitter-containing vesicles was performed. The results suggest that muscular contraction in the seminal vesicle is predominantly under the influence of the sympathetic nervous system, whereas secretory epithelial function is regulated by both sympathetic and parasympathetic fibers.  相似文献   

13.
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.  相似文献   

14.
Members of the bombesin family of peptides potently stimulate insulin release by HIT-T15 cells, a clonal pancreatic cell line. The response to bombesin consists of a large burst in secretion during the first 30 s, followed by a smaller elevation of the secretory rate, which persists for 90 min. The aim of this study was to identify the intracellular messengers involved in this biphasic secretory response. Addition of 100 nM-bombesin to cells for 20 s increased the cellular accumulation of [3H]diacylglycerol (DAG) by 40% and that of [3H]inositol monophosphate (InsP), bisphosphate (InsP2) and trisphosphate (InsP3) by 40%, 300%, and 800%, respectively. In contrast, cyclic AMP concentrations were unaffected. Bombesin stimulation of [3H]InsP3 formation was detected at 2 s, before the secretory response, which was not measurable until 5 s. Furthermore, the potency of bombesin to stimulate [3H]InsP3 generation (ED50 = 14 +/- 9 nM) agreed with its potency to stimulate insulin release (ED50 = 6 +/- 2 nM). Consistent with its effects on [3H]InsP3 formation, bombesin raised the intracellular free Ca2+ concentration [( Ca2+]i) from a basal value of 0.28 +/- 0.01 microM to a peak of 1.3 +/- 0.1 microM by 20 s. Chelation of extracellular Ca2+ did not abolish either the secretory response to bombesin or the rise in [Ca2+]i, showing that Ca2+ influx was not required. Although the Ca2+ ionophore ionomycin (100 nM) mimicked the [Ca2+]i response to bombesin, it did not stimulate secretion. However, pretreating cells with ionomycin decreased the effects of bombesin on both [Ca2+]i and insulin release, suggesting that elevation of [Ca2+]i was instrumental in the secretory response to this peptide. To determine the role of the DAG produced upon bombesin stimulation, we examined the effects of another activator of protein kinase C, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA did not affect [Ca2+]i, but it increased insulin secretion after a 2 min lag. However, an immediate increase in secretion was observed when ionomycin was added simultaneously with TPA. These data indicate that the initial secretory burst induced by bombesin results from the synergistic action of the high [Ca2+]i produced by InsP3 and DAG-activated protein kinase C. However, activation of protein kinase C alone appears to be sufficient for a sustained secretory response.  相似文献   

15.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

16.
17.
To examine whether collagen is assembled into fibrils within or outside fibroblasts, the connective tissue of the rat foot pad was investigated by electron microscopy and by radioautography at times varying from 4 min to 3 days after an intravenous injection of 3H-proline. The fibroblasts of the rat food pad are long polarized cells with the nucleus at one end, the Golgi apparatus in the center, and a region with long processes at the other end. This region contains secretory granules and is considered to be the secretory pole of the cell. In the Golgi apparatus the stacks of saccules are separated from rough endoplasmic reticulum (rER) by groups of "intermediate vesicles" including similarly structured tubules which may be over 300 nm long and are referred to as "intermediate tubules." The Golgi saccules exhibit distended portions which differ at the various levels of the stack. On the cis side, the distentions tend to be spherical and contain fine looping threads; in the middle of the stack, they are cylindrical and present distinct straight threads; whereas on the trans side, they are again cylindrical, but the straight threads are grouped in parallel aggregates. Between these cylindrical distentions and the secretory granules, there are transitional forms within which thread aggregates are packaged more and more tightly. Finally, the fibroblasts are associated with two types of collagen fibrils: extracellular ones arranged into large groups between the cells and intracellular ones located within long intracytoplasmic channels. Quantitative radioautography after 3H-proline injection reveals that the number of silver grains per unit area reaches a peak over the rER at 4-10 min, Golgi apparatus at 40 min, secretory granules at 60 min, and extracellular collagen fibrils at 3 h. At no time are intracellular collagen fibrils labeled. Qualitative observations further indicate that spherical Golgi distentions are mainly labeled at 40 min, and cylindrical distentions, at 60 min. In addition, from 20 min to 3 hr, some lysosomal elements are labeled. The biogenetic pathway leading to the formation of collagen fibrils is interpreted as follows.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.  相似文献   

19.
Mammary epithelium is organized as a bilayer with a layer of luminal secretory cells and a layer of basal myoepithelial cells. To dissect the specific functions of these two major compartments of the mammary epithelium in mammary morphogenesis we have used genetically modified mice carrying transgenes or conditional alleles whose expression or ablation were cell-type specific. Basal cells are located in close proximity to mammary stroma and directly interact with the extracellular matrix (basement membrane) during all their lifespan. On the contrary, luminal secretory cells during early stages of the postnatal mammary development have only limited contacts with basement membrane and become exposed to the extracellular matrix only during late developmental stages at the end of pregnancy and in lactation. Consistently perturbation of beta1-integrin function specifically in the luminal layer of the mammary epithelium, did not interfere with mammary morphogenesis until the second part of pregnancy but led to impaired secretory differentiation and lactation. On the contrary, ablation of beta1-integrin gene in the basal mammary epithelial cells resulted in a more precocious phenotype: disorganized branching in young virgin animals and a complete arrest of lobuloalveolar development. Further, a constitutive activation of beta-catenin signaling due to expression of N-terminally truncated (stabilized) beta-catenin specifically in basal myoepithelial cells resulted in accelerated differentiation of luminal secretory cells in pregnancy, precocious postlactational involution, increased angiogenesis and development of mammary tumors. Altogether these data suggest that basal mammary epithelial cells can affect growth and differentiation of luminal secretory cells, have an impact on the epithelium-stroma relationships and, thereby, play an important role in the process of mammary morphogenesis and differentiation.  相似文献   

20.
Enhancement of stem cell Ag-1 (Sca-1) expression by myeloid precursors promotes the granulopoietic response to bacterial infection. However, the underlying mechanisms remain unclear. ERK pathway activation strongly enhances proliferation of hematopoietic progenitor cells. In this study, we investigated the role of Sca-1 in promoting ERK-dependent myeloid lineage proliferation and the effects of alcohol on this process. Thirty minutes after i.p. injection of alcohol, mice received i.v. challenge with 5 × 10(7) Escherichia coli for 8 or 24 h. A subset of mice received i.v. BrdU injection 20 h after challenge. Bacteremia increased Sca-1 expression, ERK activation, and proliferation of myeloid and granulopoietic precursors. Alcohol administration suppressed this response and impaired granulocyte production. Sca-1 expression positively correlated with ERK activation and cell cycling, but negatively correlated with myeloperoxidase content in granulopoietic precursors. Alcohol intoxication suppressed ERK activation in granulopoietic precursors and proliferation of these cells during bacteremia. Granulopoietic precursors in Sca-1(-/-) mice failed to activate ERK signaling and could not increase granulomacrophagic CFU activity following bacteremia. These data indicate that Sca-1 expression promotes ERK-dependent myeloid cell proliferation during bacteremia. Suppression of this response could represent an underlying mechanism for developing myelosuppression in alcohol-abusing hosts with severe bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号