首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rad51 and Rad54 proteins are important for the repair of double-stranded DNA (dsDNA) breaks by homologous recombination in eukaryotes. Rad51 assembles on single-stranded DNA (ssDNA) to form a helical nucleoprotein filament that performs homologous pairing with dsDNA; Rad54 stimulates this pairing substantially. Here, we demonstrate that Rad54 acts in concert with the mature Rad51-ssDNA filament. Enhancement of DNA pairing by Rad54 is greatest at an equimolar ratio relative to Rad51 within the filament. Reciprocally, the Rad51-ssDNA filament enhances both the dsDNA-dependent ATPase and the dsDNA unwinding activities of Rad54. We conclude that Rad54 participates in the DNA homology search as a component of the Rad51-nucleoprotein filament and that the filament delivers Rad54 to the dsDNA pairing locus, thereby linking the unwinding of potential target DNA with the homology search process.  相似文献   

2.
Rad51 is the central catalyst of homologous recombination in eukaryotes and is thus critical for maintaining genomic integrity. Recent crystal structures of filaments formed by Rad51 and the closely related archeal RadA and eubacterial RecA proteins place the ATPase site at the protomeric interface. To test the relevance of this feature, we mutated conserved residues at this interface and examined their effects on key activities of Rad51: ssDNA-stimulated ATP hydrolysis, DNA binding, polymerization on DNA substrates and catalysis of strand-exchange reactions. Our results show that the interface seen in the crystal structures is very important for nucleoprotein filament formation. H352 and R357 of yeast Rad51 are essential for assembling the catalytically competent form of the enzyme on DNA substrates and coordinating its activities. However, contrary to some previous suggestions, neither of these residues is critical for ATP hydrolysis.  相似文献   

3.
In Saccharomyces cerevisiae, the Rad54 protein participates in the recombinational repair of double-strand DNA breaks together with the Rad51, Rad52, Rad55 and Rad57 proteins. In vitro, Rad54 interacts with Rad51 and stimulates DNA strand exchange promoted by Rad51 protein. Rad54 is a SWI2/SNF2-related protein that possesses double-stranded DNA-dependent ATPase activity and changes DNA topology in an ATP hydrolysis-dependent manner. Here we show that Rad54 catalyzes bidirectional nucleosome redistribution by sliding nucleosomes along DNA. Nucleosome redistribution is greatly stimulated by the Rad51 nucleoprotein filament but does not require the presence of homologous single-stranded DNA within the filament. On the basis of these data, we propose that Rad54 facilitates chromatin remodeling and, perhaps more generally, protein clearing at the homology search step of genetic recombination.  相似文献   

4.
Rad54 protein is a Snf2-like ATPase with a specialized function in the recombinational repair of DNA damage. Rad54 is thought to stimulate the search of homology via formation of a specific complex with the presynaptic Rad51 filament on single-stranded DNA. Herein, we address the interaction of Rad54 with Rad51 filaments on double-stranded (ds) DNA, an intermediate in DNA strand exchange with unclear functional significance. We show that Saccharomyces cerevisiae Rad54 exerts distinct modes of ATPase activity on partially and fully saturated filaments of Rad51 protein on dsDNA. The highest ATPase activity is observed on dsDNA containing short patches of yeast Rad51 filaments resulting in a 6-fold increase compared with protein-free DNA. This enhanced ATPase mode of yeast Rad54 can also be elicited by partial filaments of human Rad51 protein but to a lesser extent. In contrast, the interaction of Rad54 protein with duplex DNA fully covered with Rad51 is entirely species-specific. When yeast Rad51 fully covers dsDNA, Rad54 protein hydrolyzes ATP in a reduced mode at 60-80% of its rate on protein-free DNA. Instead, saturated filaments with human Rad51 fail to support the yeast Rad54 ATPase. We suggest that the interaction of Rad54 with dsDNA-Rad51 complexes is of functional importance in homologous recombination.  相似文献   

5.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

6.
F E Benson  A Stasiak    S C West 《The EMBO journal》1994,13(23):5764-5771
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.  相似文献   

7.
Rad51, like its prokaryotic homolog RecA, forms a helical filament for homologous DNA recombination and recombinational DNA repair. Comparison of the three-dimensional structures of human Rad51 and Escherichia coli RecA indicated that the tyrosine residue at position 191 in human Rad51 lies at the centre of a putative subunit-subunit contact interface. We inserted a tryptophan residue as a fluorescent probe at the corresponding position in Xenopus Rad51.1 and found that its fluorescence depended upon the protein concentration, indicating that the residue is truly in the subunit-subunit interface. We also found that 3 M urea, which promoted the dissociation of Rad51 filament without complete unfolding of the protein, exposed the tryptophan residue to solvent. The fluorescence was not modified by binding to DNA and only slightly modified by ATP, indicating that the same site is used for formation of the active ATP-Rad51-DNA filament. The slight changes in fluorescence caused by ATP and ADP suggest that the subunit-subunit contact is altered, leading to the elongation of the filament by these nucleotides, as with the RecA filament. Thus, Rad51 forms filaments by subunit-subunit contact much like RecA does.  相似文献   

8.
Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine''s inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2''s Rad51 filament dismantling activity or Rad51''s ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments.  相似文献   

9.
Rad51 forms a helical filament on single-stranded DNA and promotes strand exchange between two homologous DNA molecules during homologous recombination. The Swi5-Sfr1 complex interacts directly with Rad51 and stimulates strand exchange. Here we describe structural and functional aspects of the complex. Swi5 and the C-terminal core domain of Sfr1 form an essential activator complex with a parallel coiled-coil heterodimer joined firmly together via two previously uncharacterized leucine-zipper motifs and a bundle. The resultant coiled coil is sharply kinked, generating an elongated crescent-shaped structure suitable for transient binding within the helical groove of the Rad51 filament. The N-terminal region of Sfr1, meanwhile, has an interface for binding of Rad51. Our data suggest that the snug fit resulting from the complementary geometry of the heterodimer activates the Rad51 filament and that the N-terminal domain of Sfr1 plays a role in the efficient recruitment of the Swi5-Sfr1 complex to the Rad51 filaments.  相似文献   

10.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   

11.
Human Rad51 (HsRad51) catalyzes the strand exchange reaction, a crucial step in homologous recombination, by forming a filamentous complex with DNA. The structure of this filament is modified by ATP, which is required and hydrolyzed for the reaction. We analyzed the structure and the ATP-promoted conformational change of this filament. We systematically replaced aromatic residues in the protein, one at a time, with tryptophan, a fluorescent probe, and examined its effect on the activities (DNA binding, ATPase, ATP-promoted conformational change, and strand exchange reaction) and the fluorescence changes upon binding of ATP and DNA. Some residues were also replaced with alanine. We thus obtained structural information about various positions of the protein in solution. All the proteins conserved, at least partially, their activities. However, the replacement of histidine at position 294 (H294) and phenylalanine at 129 (F129) affected the ATP-induced conformational change of the DNA-HsRad51 filament, although it did not prevent DNA binding. F129 is considered to be close to the ATP-binding site and to H294 of a neighboring subunit. ATP probably modifies the structure around F129 and affects the subunit/subunit contact around H294 and the structure of the DNA-binding site. The replacement also reduced the DNA-dependent ATPase activity, suggesting that these residues are also involved in the transmission of the allosteric effect of DNA to the ATP-binding site, which is required for the stimulation of ATPase activity by DNA. The fluorescence analyses supported the structural change of the DNA-binding site by ATP and that of the ATP-binding site by DNA. This information will be useful to build a molecular model of the Rad51-DNA complex and to understand the mechanism of activation of Rad51 by ATP and that of the Rad51-promoted strand exchange reaction.  相似文献   

12.
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed.  相似文献   

13.
Qian X  He Y  Luo Y 《Biochemistry》2007,46(20):5855-5863
RecA-like strand exchange proteins, which include closely related archaeal Rad51/RadA and eukaryal Rad51 and DMC1, play a key role in DNA repair by forming helical nucleoprotein filaments which promote a hallmark strand exchange reaction between homologous DNA substrates. Our recent crystallographic studies on a RadA recombinase from Methanococcus voltae (MvRadA) have unexpectedly revealed a secondary magnesium at the subunit interface approximately 11 A from the primary one coordinated by ATP and the canonical P-loop. The DNA-dependent ATPase activity of MvRadA appears to be dependent on the concentration of free Mg2+, while the strand exchange activity does not. We also made site-directed mutagenesis at the Mg2+-liganding residue Asp-246. The mutant proteins exhibited approximately 20-fold reduced ATPase activity but normal strand exchange activity. Structurally, the main chain carbonyl of the conserved catalytic residue Glu-151 is hydrogen bonded with one of the magnesium-liganding water molecules. Changes in the secondary magnesium site may therefore induce conformational changes around this catalytic glutamate and affect the ATPase activity without significantly altering the stability of the extended recombinase filament. Asp-246 is somewhat conserved among archaeal and eukaryal homologues, implying some homologues may share this allosteric site for ATPase function.  相似文献   

14.
Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51   总被引:11,自引:0,他引:11  
Rad51-mediated homologous recombination (HR) is essential for maintenance of genome integrity. The Xrcc3 protein functions in HR DNA repair, and studies suggest it has multiple roles at different stages in this pathway. Defects in vertebrate XRCC3 result in elevated levels of spontaneous and DNA damage-induced chromosomal abnormalities, as well as increased sensitivity to DNA damaging agents. Formation of DNA damaged-induced nuclear Rad51 foci requires Xrcc3 and the other Rad51 paralog proteins (Rad51B, Rad51C, Rad51D, Xrcc2), thus supporting a model in which an early function of Xrcc3 involves promoting assembly of active Rad51 repair complexes. However, it is not known whether Xrcc3 or other Rad51 paralog proteins accumulate at DNA breaks, and if they do whether their stable association with breaks requires Rad51. Here we report for the first time that Xrcc3 forms distinct foci in human cells and that nuclear Xrcc3 begins to localize at sites of DNA damage within 10 min after radiation treatment. RNAi-mediated knock down of Rad51 has no effect on the DNA damage-induced localization of Xrcc3 to DNA breaks. Our data are consistent with a model in which Xrcc3 associates directly with DNA breaks independent of Rad51, and subsequently facilitates formation of the Rad51 nucleoprotein filament.  相似文献   

15.
The tumor suppressor BRCA2 protein plays a major role in the regulation of Rad51-catalyzed homologous recombination. BRCA2 interacts with monomeric Rad51 primarily via conserved BRC domains and coordinates the formation of Rad51 filaments at double-stranded DNA (dsDNA) breaks. A number of cancer-associated mutations in BRC4 and BRC2 domains have been reported. To elucidate their effects on homologous recombination, we studied Rad51 filament formation on single-stranded DNA and dsDNA substrates and Rad51-catalyzed strand exchange, in the presence of wild-type and mutated peptides of either BRC4 or BRC2. While the wild-type BRC2 and BRC4 peptides inhibited filament formation and, thus, strand exchange, the mutated forms decreased significantly these inhibitory effects. These results are consistent with a three-dimensional model for the interface between individual BRC repeats and Rad51. We suggest that mutations at sites crucial for the association between Rad51 and BRC domains impair the ability of BRCA2 to recruit Rad51 to dsDNA breaks, hampering recombinational repair.  相似文献   

16.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

17.
ATP-dependent and independent functions of Rad54 in genome maintenance   总被引:1,自引:0,他引:1  
Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54's ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54's ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non-DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.  相似文献   

18.
A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function. Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad52 in the rad52 Delta327 background enhances the association of Rad51 protein with a HO-made DNA double-strand break and partially complements the methylmethane sulfonate sensitivity of the mutant cells. Our results provide a mechanistic framework for rationalizing the multi-faceted role of Rad52 in recombination and DNA repair.  相似文献   

19.
Proteins in the RecA/RadA/Rad51 family form helical filaments on DNA that function in homologous recombination. While these proteins all have the same highly conserved ATP binding core, the RadA/Rad51 proteins have an N-terminal domain that shows no homology with the C-terminal domain found in RecA. Both the Rad51 N-terminal and RecA C-terminal domains have been shown to bind DNA, but no role for these domains has been established. We show that RadA filaments can be trapped in either an inactive or active conformation with respect to the ATPase and that activation involves a large rotation of the subunit aided by the N-terminal domain. The G103E mutation within the yeast Rad51 N-terminal domain inactivates the filament by failing to make proper contacts between the N-terminal domain and the core. These results show that the N-terminal domains play a regulatory role in filament activation and highlight the modular architecture of the recombination proteins.  相似文献   

20.
The UvsX protein from bacteriophage T4 is a member of the RecA/Rad51/RadA family of recombinases active in homologous genetic recombination. Like RecA, Rad51 and RadA, UvsX forms helical filaments on DNA. We have used electron microscopy and a novel method for image analysis of helical filaments to show that UvsX-DNA filaments exist in two different conformations: an ADP state and an ATP state. As with RecA protein, these two states have a large difference in pitch. Remarkably, even though UvsX is only weakly homologous to RecA, both UvsX filament states are more similar to the RecA crystal structure than are RecA-DNA filaments. We use this similarity to fit the RecA crystal structure into the UvsX filament, and show that two of the three previously described blocks of similarity between UvsX and RecA are involved in the subunit-subunit interface in both the UvsX filament and the RecA crystal filament. Conversely, we show that human Rad51-DNA filaments have a different subunit-subunit interface than is present in the RecA crystal, and this interface involves two blocks of sequence similarity between Rad51 and RecA that do not overlap with those found between UvsX and RecA. This suggests that helical filaments in the RecA/Rad51/RadA family may have arisen from convergent evolution, with a conserved core structure that has assembled into multimeric filaments in a number of different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号