首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the rotation spectra of mouse oocytes and zygotes   总被引:1,自引:0,他引:1  
Rotation spectra of mouse oocytes, zygotes and embryos in the two-cell stage under the influence of high-frequency rotating fields were studied. The characteristic frequency (fc1) of cells isolated from superovulated + mated mice is different from that of oocytes. This was attributed to an increase in the membrane resistance and, less probably, to a change in the zona pellucida conductivity. The rotation spectra can be used to differentiate between non-fertilized and fertilized eggs. A theoretical interpretation of the measured spectra and simulation of the changes caused by fertilization is given.  相似文献   

2.
Alterations in the rate of oocyte meiotic maturation (OM) and the timing of the metaphase-anaphase transition may predispose oocytes to premature centromere separation (PCS) and aneuploidy. Tamoxifen has the potential for perturbing the rate of OM since it can function as a calcium antagonist by binding to calmodulin and inhibiting the formation of a calcium-calmodulin complex which is needed for activating calmodulin-dependent cAMP phosphodiesterase and initiating OM. The objective of this study was to test the hypothesis that tamoxifen alters the rate of OM and predisposes oocytes to PCS and aneuploidy. Different does of tamoxifen were administered by oral gavage to female mice preovulation. Metaphase II oocyte and 1-cell zygote chromosomes were C-banded and cytogenetically analysed. Tamoxifen treatment resulted in a modest, but significant (p < 0.05), increase in oocytes with PCS. Similar frequencies of hyperploidy and oocytes with unpaired, single chromatids (SC) were found. Metaphase I, diploid and premature anaphase (PA) oocytes were not detected. Hyperploidy, polyploidy, PCS, PA and SC were not detected in zygotes. These data indicate that the levels of tamoxifen-induced PCS found in mouse oocytes did not predispose zygotes to aneuploidy. Tamoxifen did, however, reduce the proportion of females exhibiting oestrus.  相似文献   

3.
To determine the role of Pin1 in the neurotransmission pathway, Pin1-binding proteins in mouse brain extract were identified. The Pin1-binding proteins were extracted from mouse brain homogenate, and the trypsin-digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins that involve the neurotransmission pathway, such as synapsin I, synapsin II, and calcium/calmodulin-dependent protein kinase type II (CaMKII), were identified in a Mascot search. Pull-down and immunoprecipitation assay indicated that Pin1 binds CaMKII in a phosphorylation-specific manner. It was assumed that Pin1 participates in the neurotransmission pathway involving the phosphorylation signal by CaMKII.  相似文献   

4.
I Kola  C Kirby  J Shaw  A Davey  A Trounson 《Teratology》1988,38(5):467-474
Vitrification of mouse oocytes adversely affected the subsequent developmental potential of embryos and fetuses derived from the fertilization of such oocytes after thawing. Only 5% of oocytes vitrified formed viable fetuses on the 15th day of gestation as compared to 47% in the controls. The incidence of chromosomally aneuploid zygotes, derived from cryopreserved oocytes, was approximately threefold higher than the controls irrespective of whether the oocytes were cryopreserved by vitrification or DMSO slow-freezing. Malformed fetuses were obtained from oocytes that had been vitrified as well as those that had been exposed to vitrification solutions only, whereas no malformed fetuses were obtained in oocytes slow-frozen by DMSO or fresh controls--thus demonstrating that the exposure of oocytes to the vitrification chemicals was responsible for the fetal malformations. The data in this study suggest that the vitrification technique should be cautiously applied to human oocyte cryopreservation. Furthermore, the data also demonstrate that the exposure of female gametes to carcinogenic and/or teratogenic chemicals may result in malformed embryos when such oocytes are subsequently fertilized.  相似文献   

5.
Intracellular concentrations of potassium and phosphorus were determined by Electron Probe Microanalysis in mouse mature oocytes and zygotes. The oocytes were characterized by insignificant variations in the concentrations of these elements in the cytoplasm: 60 ± 4 and 103 ± 6 mM, respectively. In zygotes, on the contrary, significant variations were observed: 64 ± 16 and 84 ± 14 mM, respectively. Changes in the potassium homeostasis during the first cell cycle have been discussed.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 123–127.Original Russian Text Copyright © 2005 by Pogorelov, Smolyaninova, Pogorelova, Goldstein.  相似文献   

6.
Intracellular concentrations of potassium and phosphorus were determined by Electron Probe Microanalysis in mouse mature oocytes and zygotes. The oocytes were characterized by insignificant variations in the concentrations of these elements in the cytoplasm: 60 +/- 4 and 103 +/- 6 mM, respectively. In zygotes, on the contrary, significant variations were observed: 64 +/- 16 and 84 +/- 14 mM, respectively. Changes in the potassium homeostasis during the first cell cycle have been discussed.  相似文献   

7.
8.
This study (1) analyzed fetal development of mouse embryos after oocyte cryopreservation in CJ2, a choline-based medium, (2) examined the effect of culture duration in vitro on subsequent fetal development, and (3) compared survival and fetal development of zygotes frozen in embryo transfer freeze medium (ETFM; sodium-based medium) or CJ2. Unfertilized oocytes and zygotes were cryopreserved using a slow-cooling protocol. After thawing, oocytes were inseminated after drilling a hole in their zona, cultured in vitro either to the two-cell or blastocyst stage, and transferred to the oviducts or uterine horns of recipient mice. In parallel experiments, frozen-thawed zygotes were similarly cultured and transferred. Implantation rates for transferred embryos were high (range 66-88%), regardless of whether they had been frozen as oocytes or zygotes and whether they had been transferred to the oviduct or uterus. However, fetal development was significantly higher when two-cell embryos were transferred. With blastocyst transfer, control embryos implanted and produced a greater proportion of fetuses than did oocytes frozen in CJ2, whereas transfer at the two-cell stage resulted in similar proportions of implantation sites and fetuses. Blastocyst transfer of zygotes cryopreserved in ETFM or CJ2 produced similar fetal development rates (23.6% vs 20.0%), but when frozen-thawed zygotes were transferred at the two-cell stage the fetal development rates were higher in the ETFM group (53.3%) than in the CJ2 group (32.0%). A high proportion (46.7%) of oocytes frozen in CJ2 in a nonprogrammable freezer and plunged at -20 degrees C developed into live offspring. This study shows that in the mouse (1) oocytes frozen in CJ2 can develop into viable fetuses, (2) prolonging culture in vitro has a detrimental effect on embryo transfer outcome, and (3) CJ2 offers no advantage for zygote cryopreservation.  相似文献   

9.
The events of mammalian fertilization overlap with the completion of meiosis and first mitosis; the pronuclei never fuse, instead the parental genomes first intermix at the mitotic spindle equator at metaphase. Since kinetochores are essential for the attachment of chromosomes to spindle microtubules, this study explores their appearance and behavior in mouse oocytes, zygotes and embryos undergoing the completion of meiosis, fertilization and mitoses. Kinetochores are traced with immunofluorescence microscopy using autoimmune sera from patients with CREST (CREST = calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) scleroderma. These sera cross-react with the 17 kDa centromere protein (CENP-A) and the 80 kDa centromere protein (CENP-B) found at the kinetochores in human cell cultures. The unfertilized oocyte is ovulated arrested at second meiotic metaphase and kinetochores are detectable as paired structures aligned at the spindle equator. At meiotic anaphase, the kinetochores separate and remain aligned at the distal sides of the chromosomes until telophase, when their alignment perpendicular to the spindle axis is lost. The female pronucleus and the second polar body nucleus each receive a detectable complement of kinetochores. Mature sperm have neither detectable centrosomes nor detectable kinetochores, and shortly after sperm incorporation kinetochores become detectable in the decondensing male pronucleus. In pronuclei, the kinetochores are initially distributed randomly and later found in apposition with nucleoli. At mitosis, the kinetochores behave in a pattern similar to that observed at meiosis or mitosis in somatic cells: irregular distribution at prophase, alignment at metaphase, separation at anaphase and redistribution at telophase. They are also detectable in later stage embryos. Colcemid treatment disrupts the meiotic spindle and results in the dispersion of the meiotic chromosomes along the oocyte cortex; the chromosomes remain condensed with detectable kinetochores. Fertilization of Colcemid-treated oocytes results in the incorporation of a sperm which is unable to decondense into a male pronucleus. Remarkably kinetochores become detectable at 5 h post-insemination, suggesting that the emergence of the paternal kinetochores is not strictly dependent on male pronuclear decondensation.  相似文献   

10.
The distribution of post-translationally modified forms of tubulin has been studied in mouse oocytes arrested in meiotic metaphase II and in interphase eggs after fertilisation. Tyrosinated and acetylated microtubules are present in the meiotic spindle but detyrosinated ones are not. Acetylation only occurs in the most stable subpopulation of microtubules in the spindles ("pole to kinetochore"). After fertilisation, many microtubules of the interphase array become acetylated, but detyrosination occurs only at a very low level.  相似文献   

11.
Natural N-terminal fragments of brain abundant myristoylated protein BASP1   总被引:2,自引:0,他引:2  
BASP1 (also known as CAP-23 and NAP-22) is a novel myristoylated calmodulin-binding protein, abundant in nerve terminals. It is considered as a signal protein participating in neurite outgrowth and synaptic plasticity. BASP1 is also present in significant amounts in kidney, testis, and lymphoid tissues. In this study, we show that BASP1 is accompanied by at least six BASP1 immunologically related proteins (BIRPs), which are present in all animal species studied (rat, bovine, human, chicken). BIRPs have lower molecular masses than that of BASP1. Similarly to BASP1, they are myristoylated. Peptide mapping and partial sequencing have shown that BIRPs represent a set of BASP1 N-terminal fragments devoid of C-terminal parts of different length. In a definite species, the same set of BASP1 fragments is present in both brain and other tissues. The sum amount of the fragments is about 50% of the BASP1 amount in a tissue. Obligatory accompanying of BASP1 by a set of specific fragments indicates that these fragments are of physiological significance.  相似文献   

12.
GAP-43 is a membrane phosphoprotein that is important for the development and plasticity of neural connections. In undifferentiated PC12 pheochromocytoma cells, GAP-43 mRNA degrades rapidly ( t = 5 h), but becomes stable when cells are treated with nerve growth factor. To identify trans- acting factors that may influence mRNA stability, we combined column chromatography and gel mobility shift assays to isolate GAP-43 mRNA binding proteins from neonatal bovine brain tissue. This resulted in the isolation of two proteins that bind specifically and competitively to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Partial amino acid sequencing revealed that one of the RNA binding proteins coincides with FBP (far upstream element binding protein), previously characterized as a protein that resembles hnRNP K and which binds to a single-stranded, pyrimidine-rich DNA sequence upstream of the c -myc gene to activate its expression. The other binding protein shares sequence homology with PTB, a polypyrimidine tract binding protein implicated in RNA splicing and regulation of translation initiation. The two proteins bind to a 26 nt pyrimidine-rich sequence lying 300 nt downstream of the end of the coding region, in an area shown by others to confer instability on a reporter mRNA in transient transfection assays. We therefore propose that FBP and the PTB-like protein may compete for binding at the same site to influence the stability of GAP-43 mRNA.  相似文献   

13.
To increase our understanding about the potential risks of chemically-induced aneuploidy, more information about the various mechanisms of aneuploidy induction is needed, particularly in germ cells. Most chemicals that induce aneuploidy inhibit microtubule polymerization. However, taxol alters microtubule dynamics by enhancing polymerization and stabilizing the polymer fraction. We tested the hypothesis that taxol induces meiotic delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Super-ovulated ICR mice received 0 (control), 2.5, 5.0, and 7.5 mg/kg taxol intraperitoneally immediately after HCG. Females were paired (1:1) with males for 17 h after taxol treatment. Mated females were given colchicine 25 h after taxol and their one-cell zygotes were collected 16 h later. Ovulated oocytes from non-mated females were collected 17 h after taxol. Chromosomes were C-banded for cytogenetic analyses. Oocytes were also collected from another group of similarly treated females for in situ chromatin and microtubule analyses. Taxol significantly (p<0.01) enhanced the proportion of oocytes exhibiting parthenogenetic activation, chromosomes displaced from the meiotic spindle, and sister-chromatid separation. Moreover, 7.5 mg/kg taxol significantly (p<0.01) increased the proportions of metaphase I and diploid oocytes and polyploid zygotes. A significant (p<0.01) dose response for taxol-induced hyperploidy in oocytes and zygotes was found. These results support the hypothesis that taxol-induced meiotic delay and spindle defects contribute to aneuploid mouse oocytes and zygotes.  相似文献   

14.
Connexin-43 (Cx43), the most ubiquitously expressed vertebrate gap junction protein, has been shown to interact directly with Zonula Occludens-1 (ZO-1). Although several potential functions have been proposed for the ZO-1/Cx43 interaction, the role that ZO-1 and other Cx43-interacting partners play in the regulation of Cx43 trafficking, assembly, gating and turnover are not well understood. We believed a thorough analysis and classification of other Cx43-interacting proteins might help us to understand and better test these roles. We approached this question by utilizing Tandem Mass Spectrometry (MS/MS) analysis to identify proteins from normal rat kidney whole cell lysates that could interact with the C-terminal region of Cx43. Comparison against protein sequence databases identified 19 probable protein matches, including kinases, phosphatases, membrane receptors, cell signaling molecules and scaffolding proteins. We have further characterized some of these interacting proteins, including Zonula Occludens-2 (ZO-2), via western blotting and "pull down" experiments. Further in vitro/in vivo analysis of these interacting proteins will help in our understanding of the global role of connexins in regulating development, cell metabolism and growth.  相似文献   

15.
The cytoplasmic factor responsible for chromosome condensation was introduced into mouse zygotes at different times after fertilization by fusion of the zygotes with metaphase I oocytes. In 72% of heterokaryons obtained after fusion of early zygotes (14-18 hr post-human chorionic gonadotrophin (HCG) with oocytes, the male and female pronuclei of the zygote decondensed. At the same time, the oocyte chromosomes became enclosed in a nuclear envelope and decondensed to an interphase state. However, in the rest of the heterokaryons, the chromatin of the pronuclei condensed to metaphase chromosomes, thus resulting in three sets of chromosomes. Fusion of zygotes that had begun DNA synthesis (20-22 hr post-HCG) with oocytes induced chromosome condensation of the pronuclei in 76% of the cases. In some heterokaryons, however, the oocyte chromosome decondensed to an interphase state similar to the zygote pronuclei. Fusion between late zygotes (27-29 hr post-HCG) with oocytes resulted in chromosome condensation of the pronuclei in all heterokaryons. On the basis of these results, the formation of the pronuclei and their progression toward mitosis in the zygote may be explained by changing levels of a metaphase factor in the cell, or by a balance between interphase and metaphase factors.  相似文献   

16.
Eroglu A  Lawitts JA  Toner M  Toth TL 《Cryobiology》2003,46(2):121-134
Sugars such as trehalose are effectively used by various organisms as protective agents to undergo anhydrobiosis and cryobiosis. The objective of this study was first to establish a method for quantitative delivery of trehalose as a model sugar into oocytes, and then to evaluate its effect on development of mouse zygotes. To this end, a quantitative microinjection technique was developed using volumetric response of microdroplets suspended in dimethylpolysilaxene. To verify accuracy of this technique, both microdroplets and oocytes were microinjected with fluorophore-labeled dextran. Thereafter, injection volumes were calculated from fluorescence intensity, and volumetric responses of both microdroplets and oocytes. Comparison of calculated injection volumes revealed that this technique reflects microinjection into oocytes with pL-accuracy. The next series of experiments focused on toxicity of injection buffers (i.e., 10mM Tris and 15mM Hepes) and trehalose. Microinjection of Hepes and Tris buffer in the presence of 0.1M trehalose resulted in blastocyst rates of 86 and 72%, respectively, without a significant difference when compared to controls (86%). In subsequent experiments, Hepes was used as the injection buffer, and embryonic development of zygotes was studied as a function of intracellular trehalose concentrations. Microinjection of trehalose up to 0.15M resulted in development to blastocyst stage similar to controls (85 and 87%, respectively) while the blastocyst rate was significantly decreased (43%) in the presence of 0.20M intracellular trehalose. When transferred to foster mothers, trehalose-injected zygotes (0.1M) implanted and developed to day 16 fetuses similar to controls, healthy pups were born. The findings of this study suggest that trehalose at effective intracellular concentrations does not impair development of mouse zygotes.  相似文献   

17.
The in vivo state of phosphorylation and the modification of two Cys residues of neuromodulin/ GAP-43 (Nm) were analyzed by electrospray ionization-mass spectrometry (ES-MS). The protein was purified from rat brain with homogenization buffer containing 1% Nonidet P-40, protease inhibitors, protein phosphatase inhibitors, and sulfhydryl reagent, 4-vinylpyridine. Nm was purified by HPLC and ion-exchange chromatography, and the various fractions were identified by ES-MS as unphosphorylated and mono-, di-, tri-, and tetraphosphorylated species. All of these Nm species contained 2 mol of added 4-vinylpyridine per mol of Nm, suggesting that the two Cys residues are in the reduced form in the brain. In vivo, the majority of Nm is in the phosphorylated form (approximately 80%), of which the levels of the mono- and diphospho forms are higher than those of the tri- and tetraphospho species. Four in vivo phosphorylation sites, Ser41, Thr95, Ser142, and Thr172, were identified by amino acid sequencing and tandem ES-MS of the peptides derived from Lys-C endoproteinase digestion. Among these sites, only Ser41 is a known target of PKC, whereas the kinases responsible for the phosphorylation of the other three novel sites are unknown. Hypoxia/ischemia caused a preferential dephosphorylation of Ser41 and Thr172, whereas Thr95 is the least susceptible to dephosphorylation.  相似文献   

18.
The actin and microtubule cytoskeletons of mammalian oocytes and zygotes exist in distinct forms at various subcellular locations. This enables each cytoskeletal system to perform vastly different functions in time and space within the same cell. In recent years, key discovery enabling tools including light-sensitive microscopy assays have helped to illuminate cytoskeletal form and function in female reproductive cell biology. New findings include unexpected participation of F-actin in oocyte chromosome segregation, oocyte specific modes of spindle self-organization as well as existence of nuclear actin polymers whose functions are only starting to emerge. Functional actin-microtubule interactions have also been identified as an important feature that supports mammalian embryo development. Other advances have revealed reproductive age-related changes in chromosome structure and dynamics that predispose mammalian eggs to aneuploidy.  相似文献   

19.
20.
BASP1 was detected in the embryonic and adult chicken lens, using immunological methods and by peptide sequence analysis. The protein was predominantly expressed in fiber cells and only faintly detected in annular pad cells. Localization of the protein was along the plasma membrane of fiber cells often in discrete areas. The role of BASP1 in the lens requires further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号