首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

2.
Ganoderma boninense is the causal agent of a devastating disease affecting oil palm in Southeast Asian countries. Basal stem rot (BSR) disease slowly rots the base of palms, which radically reduces productive lifespan of this lucrative crop. Previous reports have indicated the successful use of Trichoderma as biological control agent (BCA) against G. boninense and isolate T. virens 7b was selected based on its initial screening. This study attempts to decipher the mechanisms responsible for the inhibition of G. boninense by identifying and characterizing the chemical compounds as well as the physical mechanisms by T. virens 7b. Hexane extract of the isolate gave 62.60% ± 6.41 inhibition against G. boninense and observation under scanning electron microscope (SEM) detected severe mycelial deformation of the pathogen at the region of inhibition. Similar mycelia deformation of G. boninense was observed with a fungicide treatment, Benlate® indicating comparable fungicidal effect by T. virens 7b. Fraction 4 and 5 of hexane active fractions through preparative thin layer chromatography (P-TLC) was identified giving the best inhibition of the pathogen. These fractions comprised of ketones, alcohols, aldehydes, lactones, sesquiterpenes, monoterpenes, sulphides, and free fatty acids profiled through gas chromatography mass spectrometry detector (GC/MSD). A novel antifungal compound discovery of phenylethyl alcohol (PEA) by T. virens 7b is reported through this study. T. virens 7b also proved to be an active siderophore producer through chrome azurol S (CAS) agar assay. The study demonstrated the possible mechanisms involved and responsible in the successful inhibition of G. boninense.  相似文献   

3.
Trichoderma species form endophytic associations with plant roots and may provide a range of benefits to their hosts. However, few studies have systematically examined the diversity of Trichoderma species associated with plant roots in tropical regions. During the evaluation of Trichoderma isolates for use as biocontrol agents, root samples were collected from more than 58 genera in 35 plant families from a range of habitats in Malaysian Borneo. Trichoderma species were isolated from surface-sterilised roots and identified following analysis of partial translation elongation factor-1α (tef1) sequences. Species present included Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma guizhouense, Trichoderma reesei, Trichoderma strigosum and Trichoderma virens. Trichoderma asperellum/T. asperelloides, Trichoderma harzianum s.l. and T. virens were the most frequently isolated taxa. tef1 sequence data supported the recognition of undescribed species related to the T. harzianum complex. The results suggest that tropical plants may be a useful source of novel root-associated Trichoderma for biotechnological applications.  相似文献   

4.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

5.
6.
7.
Trichoderma species are widely used in agriculture as biofungicides. These fungi are rich source of secondary metabolites and the mycoparasitic species are enriched in genes for biosynthesis of secondary metabolites. Most often, genes for secondary metabolism are clustered in fungal genomes. Previously, no systematic study was undertaken to identify the secondary-metabolism related gene clusters in Trichoderma genomes. In the present study, a survey of the three Trichoderma genomes viz. T. reesei, T. atroviride and T. virens, was made to identify the putative gene clusters associated with secondary metabolism. In T. reesei genome, we identified one new NRPS and 6 new PKS clusters, which is much less than that found in T. atroviride (4 and 8) and T. virens (8 and 7). This work would pave the way for discovery of novel secondary metabolites and pathways in Trichoderma.  相似文献   

8.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

9.
10.
11.
Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.  相似文献   

12.
As a model organism, modeling and analysis of the phenotype of Arabidopsis thaliana (A. thaliana) leaves for a given genotype can help us better understand leaf growth regulation. A. thaliana leaves growth trajectories are to be nonlinear and the leaves contribute most to the above-ground biomass. Therefore, analysis of their change regulation and development of nonlinear growth models can better understand the phenotypic characteristics of leaves (e.g., leaf size) at different growth stages. In this study, every individual leaf size of A. thaliana rosette leaves was measured during their whole life cycle using non-destructive imaging measurement. And three growth models (Gompertz model, logistic model and Von Bertalanffy model) were analyzed to quantify the rosette leaves growth process of A. thaliana. Both graphical (plots of standardized residuals) and numerical measures (AIC, R2 and RMSE) were used to evaluate the fitted models. The results showed that the logistic model fitted better in describing the growth of A. thaliana leaves compared to Gompertz model and Von Bertalanffy model, as it gave higher R2 and lower AIC and RMSE for the leaves of A. thaliana at different growth stages (i.e., early leaf, mid-term leaf and late leaf).  相似文献   

13.
In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.  相似文献   

14.
Using PCR analysis and immunofluorescence staining, we have investigated the expression of homeobox genes Vsx1/Chx10-1 and Vsx2/Chx10 from the Vsx family (visual system homeobox) during retinal morphogenesis in the chicken Gallus domesticus. It was found that the expression of the studied genes starts at the early stages of embryogenesis. It was shown that the proteins of Vsx1 and Vsx2 are localized in the bipolar cells of the inner nuclear layer of the forming retina. The participation of Vsx1/Chx10-1 and Vsx2/Chx1 in the regulation of retinal cell differentiation in various species of vertebrates and in humans was discussed.  相似文献   

15.
False smut disease of rice is posing an increasing concern for production, not only because of the hiking epidemic occurrence in rice production, but also because of the challenging specific pathogenesis of the disease. The aim of this work was to evaluate the potential of five fungal endophytes to reduce negative effects of rice false smut fungus (Ustilagonoidea virens) on rice plants, in both the laboratory and greenhouse. Though all the fungal isolates showed the ability to inhibit the growth of U. virens with varying degrees, isolate E337 showed significant antagonistic activity against the pathogenic fungi. The isolate E337 was identified as Antennariella placitae by molecular and morphological data analysis including 18S rDNA sequence analysis. This isolate showed a significant in vitro inhibition of mycelial growth of U. virens by dual culture method and it was subsequently tested for its in vivo biocontrol potential on false smut disease on rice plants. Greenhouse experiments confirmed that applications of conidia of A. placitae protected rice plants by improving rice yield and by decreasing the severity of false smut disease on susceptible rice plants. This is the first report where A. placitae has been identified as a biocontrol organism.  相似文献   

16.
Reactive oxygen species (ROS) are produced via catabolic and anabolic processes during normal embryonic development, and ROS content in the cell is maintained at a certain level. Peroxiredoxins are a family of selenium-independent peroxidases and play a key role in maintaining redox homeostasis of the cell. In addition to regulating the ROS level, peroxiredoxins are involved in intracellular and intercellular signaling, cell differentiation, and tissue development. The time course of peroxiredoxin gene (prx1–6) expression was studied in Xenopus laevis during early ontogeny (Nieuwkoop and Faber stages 10–63). The highest expression level was observed for prx1 at these developmental stages. The prx1, prx3, and prx4 expression level changed most dramatically in response to oxidative stress artificially induced in X. laevis embryos. In X. laevis adults, prx1–6 were all intensely expressed in all organs examined, the prx1 expression level being the highest. The X. laevis prx1–6 genes were cloned and expressed in Escherichia coli, and physico-chemical characteristics were compared for the recombinant enzymes. The highest peroxidase activity and thermal stability were observed for Prx1 and Prx2. It was assumed that Prx1 plays a leading role in X. laevis early development.  相似文献   

17.

Key message

The homologous genes to OsSUT1-5 in wheat were identified and detailed analysed. TaSUT1 was the predominant sucrose transporter group and it illustrated the genotypic variations towards drought during grain filling.

Abstract

Sucrose transporters (SUT) play crucial roles in wheat stem water soluble carbohydrate (WSC) remobilization to grain. To determine the major functional SUT gene groups in shoot parts of wheat during grain development, drought tolerant varieties, Westonia and Kauz, were investigated in field drought experiments. Fourteen homologous genes to OsSUT1-5 were identified on five homeologous groups, namely TaSUT1_4A, TaSUT1_4B, TaSUT1_4D; TaSUT2_5A, TaSUT2_5B, TaSUT2_5D; TaSUT3_1A, TaSUT3_1D; TaSUT4_6A, TaSUT4_6B, TaSUT4_6D; TaSUT5_2A, TaSUT5_2B, and TaSUT5_2D, and their gene structures were analysed. Wheat plants above the ground were harvested from pre-anthesis to grain maturity and the stem, leaf sheath, rachis, lemma and developing grain were used for analysing TaSUT gene expression. Grain weight, thousand grain weight, kernel number per spike, biomass and stem WSC were characterized. The study showed that among the five TaSUT groups, TaSUT1 was the predominant sucrose transporting group in all organs sampled, and the expression was particularly high in the developing grain. In contrast to TaSUT1, the gene expression levels of TaSUT2, TaSUT3 and TaSUT4 were lower, except for TaSUT3 which showed preferential expression in the lemma before anthesis. The TaSUT5 gene group was very weakly expressed in all tissues. The upregulated gene expression of TaSUT1 Westonia type in stem and grain reveal a crucial role in stem WSC remobilization to grain under drought. The high TaSUT1 gene expression and the significant correlations with thousand grain weight (TGW) and kernel number per spike demonstrated the contribution in Kauz’s high grain yield in an irrigated environment and high TGW in Westonia under drought stress. Further molecular level identification is required for gene marker development.
  相似文献   

18.
Centaurin β5, a protein with a yet unknown function, belongs to the centaurin family. It is encoded by CENTB5, whose expression pattern has been studied insufficiently. Intron 14–15 of human CENTB5 contains a lowly variable minisatellite repeat UPS29, while the mouse Centb5 contains an imperfect microsatellite repeat (CATG)19. The shorter UPS29 alleles have previously been associated with certain forms of Parkinson’s disease and epilepsy. Moreover, both human and murine CENTB5 are syntenic with SCNN1D and ACOT7, which are active primarily in the nervous system, and whose aberrations are associated with epilepsy and neurodegenerative processes. As intronic sequences can modulate the expression of not only those genes that harbor them, but also of neighboring and remote genes, the CENTB5, SCNN1D, and ACOT7 expression levels were all analyzed by RT-PCR. The potential of intronic tandem repeats UPS29 and (CATG)19 to regulate/modulate the expression of CENTB5, SCNN1D, and ACOT7 has been assessed in silico. CENTB5, SCNN1D, and ACOT7 expression was detected in all human and murine tissues studied, suggestive of their physiologic importance. The putative role of UPS29 in the regulation of CENTB5, SCNN1D, and ACOT7 activity in the nerve tissue is discussed.  相似文献   

19.
3-Aminopropyl glycosides of α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, α-D-mannopyranosyl-(1→3)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, and α-D-mannopyranosyl-(1→2)-[α-D-mannopyranosyl-(1→3)]-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose were efficiently synthesized starting from ethyl 2-O-acetyl(benzoyl)-3,4,6-tri-O-benzyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2-O-benzoyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2,3-di-O-benzoyl-1-thio-α-D-mannopyranoside, and 2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl bromide. The oligosaccharide chains synthesized correspond to the three structural types of side chains of mannan from Candida albicans cell wall. A conjugate of the third pentasaccharide with bovine serum albumin was prepared using the squarate method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号