首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this work was to study proliferation processes and the role of glia and neural stem cells in the event of injurious action on cerebellum of masu salmon’s (Oncorhynchus masou) juvenile. Using the immunoperoxidase staining of the glial fibrillary acidic protein (GFAP) and proliferating cells nuclear antigen (PCNA), processes of proliferation and gliogenesis after mechanical trauma of cerebellum of cherry salmon’s (Oncorhynchus masou) juvenile were studied. After the trauma, the intensity of proliferation and migration processes varies in different zones. Proliferation processes decrease after the trauma in lateral and basal zones, and migration increases. In the dorsal zone, on the contrary, migration processes significantly decrease and proliferation increases. In the dorsal matrix zone of a cerebellum, intense cell proliferation was detected. In the dorsal, lateral, and basal zone of the molecular layer of cerebellum after traumatic damage, neurogenic niches containing PCNA and cells, as well as a heterogeneous population of PCNA-cells, were identified. At the location of neurogenic niches, fibers of radial glia and small single intensely or moderately labeled GFAP cells were discovered. As a result of damaging action, GFAP+ fibers of radial glia, which form differently directed radially oriented bundles, appeared in the dorsal matrix zone. Such structural formations have not been discovered in intact animals. We suppose that, after the trauma, structural reconstruction connected with partial spatial reorientation of the radial glia fibers and formation of specific directions for cells formed in this zone occurs in the dorsal matrix zone. As a result of the trauma, in masu salmon’s cerebellum, elements of the radial glia, including both cells possessing typical morphology and cell fragments presented as long radially oriented processes or cell body containing initial fragments of radial fibers, appeared.  相似文献   

2.
Like in other vertebrates, the anterior part of the telencephalon of amphibians mainly consists of the olfactory bulb (OB), but different from higher vertebrates, the lateral telencephalic ventricles of larval Xenopus laevis expand deep into the anterior telencephalon. The neurogenic periventricular zone (PVZ) of the lateral ventricles generates new OB neurons throughout the animal’s lifetime. We investigated the ultrastructural organization of the PVZ and found that within a time period of 24 h, 42.54 ± 6.65% of all PVZ cells were actively proliferating. Functional purinergic receptors are widespread in the central nervous system and their activation has been associated with many critical physiological processes, including the regulation of cell proliferation. In the present study we identified and characterized the purinergic system of the OB and the PVZ. ATP and 2MeSATP induced strong [Ca2+]i increases in cells of both regions, which could be attenuated by purinergic antagonists. However, a more thorough pharmacological investigation revealed clear differences between the two brain regions. Cells of the OB almost exclusively express ionotropic P2X purinergic receptor subtypes, whereas PVZ cells express both ionotropic P2X and metabotropic P1 and P2Y receptor subtypes. The P2X receptors expressed in the OB are evidently not involved in the immediate processing of olfactory information.  相似文献   

3.
4.
5.
Distribution of nitroxidergic and H2S-producing neurons in the brain of the masu salmon Oncorhynchus masou was studied by methods of histochemical labeling of NADPH-diaphorase and by immunohistochemical labeling of the neuronal nitric oxide synthase and cystathionine β-synthase (CBS). The established distribution of CBS and nNOS/NADPH-d of neurons and fibers in the masu salmon telencephalon, optic tectum, and cerebellum allows suggesting that the NO- and H2S-producing systems represent individual, non-overlapping neuronal complexes performing specialized functions in the activity of local neuronal networks. In the medullar part, the nNOS-ir and NADPH-d-positive neurons were detected in the composition of viscerosensory (V, VII, and IX–X) and visceromotor (III, IV, and VI) nuclei of craniocerebral nerves, octavolateral afferent complex, reticulospinal neurons, and medial reticular formation. CBS in the masu salmon medulla was revealed in neurons of the nerve X nucleus, reticulospinal neurons, and ventrolateral reticular formation. Distribution of NO-ergic and H2S-producing neurons in the masu salmon medullar nuclei indicates that NO in masu salmon is the predominant neuromodulator of the medullar viscerosensory systems, while H2S seems to modulate only the descending motor systems. The results of the performed study allow suggesting that NO in the masu salmon medulla periventricular area can act as a regulator of postnatal ontogenesis.  相似文献   

6.
7.
An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.  相似文献   

8.
Using immunohistochemical labeling of the cells containing neuronal NO synthase (nNOS), tyrosine hydroxylase (TH), GABA, and parvalbumin (PA), as well as histochemical marking of choline acetyltransferase-containing neurons, we examined the neurochemical organization of the glomerular nuclei and preglomerular complex in the brain of the masu salmon (Oncorhynchus masou). Injections of the carbocyanine dye DiI allowed us to examine projections of neurons of the preglomerular and mammillary nuclei in the salmon brain. We showed that cholinergic, GABA-, PA-, TH-, and nNOS-immunopositive neurons belonging to different morphological types are present in the glomerular and medial preglomerular nuclei. The analysis of correlations between morphometric characteristics of the cells belonging to different neurochemical types and densitometric estimates of amounts of neurochemical agents present in these cells allowed us to hypothesize that there are close morphofunctional interrelations in cell populations possessing different neurochemical and morphometric characteristics. These interrelations of the cells belonging to different chemotypes are, probably, realized as mediatory/modulatory ones. The presence of a great number of small slightly differentiated cells in the preglomerular and glomerular nuclei allows us to suppose that the growth of the greatest sensory center of the salmon brain is provided by neuroblasts that migrate from the proliferative zones in the course of postembryonal neurogenesis. It is also hypothesized that NO, TH, and GABA are involved in paracrine control of the postnatal morphogenesis of the salmon preglomerular complex. The data obtained by hodological analysis indicate that the nuclei of the preglomerular complex obtain afferent projections from the dorsomedial and ventroventral telencephalic regions, preoptic nucleus, periventricular layer of the tectum, and posterior central thalamic nucleus. Our study demonstrated the existence of reciprocal functional connections between the preglomerular complex (most important diencephalic center for transmission of sensory information) and dorsomedial and ventral regions of the telencephalon in the masu salmon.  相似文献   

9.
For the long run: maintaining germinal niches in the adult brain   总被引:43,自引:0,他引:43  
Alvarez-Buylla A  Lim DA 《Neuron》2004,41(5):683-686
The adult mammalian brain retains neural stem cells that continually generate new neurons within two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the hippocampus. Though these cellular populations are spatially isolated and subserve different brain systems, common themes begin to define adult neurogenic niches: (1) astrocytes serve as both stem cell and niche cell, (2) a basal lamina and concomitant vasculogenesis may be essential components of the niche, and (3) "embryonic" molecular morphogens and signals persist in these niches and play critical roles for adult neurogenesis. The adult neurogenic niches can be viewed as "displaced" neuroepithelium, pockets of cells and local signals that preserve enough embryonic character to maintain neurogenesis for life.  相似文献   

10.
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells.  相似文献   

11.
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.  相似文献   

12.
Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method.  相似文献   

13.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

14.
To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death. Consistent with Hedgehog signaling being required for the maintenance of stem cell niches in the adult brain, progenitors from the subventricular zone of floxed Smo animals formed significantly fewer neurospheres. The loss of hedgehog signaling also resulted in abnormalities in the dentate gyrus and olfactory bulb. Furthermore, stimulation of the hedgehog pathway in the mature brain resulted in elevated proliferation in telencephalic progenitors. These results suggest that hedgehog signaling is required to maintain progenitor cells in the postnatal telencephalon.  相似文献   

15.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

16.
A cytoarchitectonic analysis of the telencephalon of the sea bass Dicentrarchus labrax, based on cresyl violet-stained serial transverse sections, is presented. Rostrally, the brain of the sea bass is occupied by sessile olfactory bulbs coupled to telencephalic hemispheres. The olfactory bulbs comprise an olfactory nerve fiber layer, a glomerular layer, an external cellular layer, a secondary olfactory fiber layer, and an internal cellular layer. Large terminal nerve ganglion cells are evident in the caudomedial olfactory bulbs. We recognized 22 distinct telencephalic nuclei which were classified in two main areas, the ventral telencephalon and the dorsal telencephalon. The ventral telencephalon displays four periventricular cell masses: the dorsal, ventral, supracommissural, and postcommissural nuclei; and four migrated populations: the lateral, central, intermediate, and entopeduncular nuclei. In addition, a periventricular cell population resembling the lateral septal organ reported in birds is observed in the ventral telencephalon of the sea bass. The dorsal telencephalon contains 13 nuclei, which can be organized into five major zones: the medial part, dorsal part, lateral part and its ventral, dorsal, and posterior divisions, the central part, and posterior part. Based on histological criteria, two cell masses are recognized in the ventral division of the lateral part of the dorsal telencephalon. The nucleus taenia is found in the caudal area of the dorsal telencephalon, close to the ventral area. This study represents a useful tool for the precise localization of the neuroendocrine territories and for the tracing of the neuronal systems participating in the regulation of reproduction and metabolism in this species.  相似文献   

17.
Bandoh H  Kida I  Ueda H 《PloS one》2011,6(1):e16051
Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka). The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl), which are homologous to the medial pallium (hippocampus) in terrestrial vertebrates. Although the concentration of L-serine (1 mM) in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM), the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.  相似文献   

18.
19.
Neurogenesis in the adult mammalian brain occurs in two specific brain areas, the subventricular zone (SVZ) bordering the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. Although these regions are prone to produce new neurons, cultured cells from these neurogenic niches tend to be mixed cultures, containing both neurons and glial cells. Several reports highlight the potential of the self-healing capacity of the brain following injury. Even though much knowledge has been produced on the neurogenesis itself, brain repairing strategies are still far away from patients cure. Here we review general concepts in the neurogenesis field, also addressing the methods available to study neural stem cell differentiation. A major problem faced by research groups and companies dedicated to brain regenerative medicine resides on the lack of good methods to functionally identify neural stem cell differentiation and novel drug targets. To address this issue, we developed a unique single cell calcium imaging-based method to functionally discriminate different cell types derived from SVZ neural stem cell cultures. The unique functional profile of each SVZ cell type was correlated at the single cell level with the immunodetection of specific phenotypic markers. This platform was raised on the basis of the functional response of neurons, oligodendrocytes and immature cells to depolarising agents, to thrombin and to histamine, respectively. We also outline key studies in which our new platform was extremely relevant in the context of drug discovery and development in the area of brain regenerative medicine.  相似文献   

20.
Identification of neural stem and progenitor cells (NPCs) in vitro and in vivo is essential to the use of developmental and disease models of neurogenesis. The dog is a valuable large animal model for multiple neurodegenerative diseases and is more closely matched to humans than rodents with respect to brain organization and complexity. It is therefore important to determine whether immunohistochemical markers associated with NPCs in humans and rodents are also appropriate for the dog. The NPC markers CD15, CD133, nestin, GFAP and phosphacan (DSD-1) were evaluated in situ in the canine rostral telencephalon, hippocampal dentate gyrus, and cerebellum at different postnatal time-points. Positive staining results were interpreted in the context of region and cellular morphology. Our results showed that neurospheres and cells within the rostral subventricular zone (SVZ), dentate gyrus subgranular zone (SGZ), and white matter tracts of the cerebellum were immunopositive for CD15, nestin and GFAP. Neurospheres and the cerebellum were immunonegative for CD133, whereas CD133 staining was present in the postnatal rostral SVZ. Anti-phosphacan antibody staining delineated the neurogenic niches of the rostral lateral ventricle SVZ and the hippocampal SGZ. Positive staining for phosphacan was also noted in white matter tracts of the cerebellum and within the Purkinje layer. Our results showed that in the dog these markers were associated with regions shown to be neurogenic in rodents and primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号