首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The intracellular distribution of calcium has been studied in the mucosa of the avian shell gland, a tissue which transports large quantities of calcium during discrete time intervals. Ca45 was administered to hens either in a single dose followed by sacrifice 5 min later or in repeated doses over an extended period followed by sacrifice 2 hr or 24 hr after the last injection. Subcellular fractions were isolated by differential centrifugation and analyzed for Ca45. The Ca45 was located principally in the particulate fractions; the concentration (CPM Ca45/mg N) was highest in the mitochondrial fraction. Comparisons of (1) the Ca45 distribution in shell gland cells with that of liver cells, (2) the alterations which occur due to the phase of the egg laying cycle, (3) the effects due to the time elapsed since the last injection of Ca45, and (4) the Ca45 distribution of the short term experiments with that of the long term experiments revealed that the mitochondrial fraction of the shell gland appeared to be active in the movement of calcium. The microsomal fraction showed increased values in CPM Ca45/mg N when calcification was occurring, which may indicate that the subcellular components of this fraction have a role in calcium transport. The nuclear and supernatant fractions did not seem to be involved in the transport process. The implications of these results concerning the manner by which calcium may be controlled on a cellular level in this system are discussed.  相似文献   

2.
The effect of cyclic AMP on calcium movements in the pancreatic β-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 45Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2′-dibutyryl adenosine 3′,5′-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic β-cells.  相似文献   

3.
To follow the intracellular distribution of calcium in the breast muscles of developing chickens, Ca45 was injected into the albumen of predeveloped eggs. Since the embryos were grown in a radioactive medium, a complete exchange of the isotope for its non-radioactive counterpart in muscles was accomplished. Subcellular particulates of the muscle cells were separated by the method of differential centrifugation. Analysis of the separated fractions showed that in the muscles of the 13-day embryo, when the nuclear-myofibrillar ratio is high, 65 per cent of the muscle calcium is in the nuclei. With the increased synthesis of myofibrils, the nuclear-myofibrillar ratio decreases with a concomitant fall in radioactivity. Thus, calcium was not associated with the developing myofibrils. At the time of hatching, when myofibrils perform physiological work, the highest level of calcium is in the mitochondria. This suggests that the mitochondria play a key role in the physiological activities of calcium in the cell. The microsomal fraction reaches a maximal level of calcium when the adult composition of muscle is attained. Results of investigations on dystrophic muscles show changes in the calcium distribution of the fractions as early as the 3rd week of embryonic development, which are interpreted to indicate an alteration in the protein metabolism of the cell, or an early destruction of muscle tissue. Further, alterations in the calcium content of fractions which seem to regulate the movements of this ion in the cell are discussed. A new technique for homogenizing tissues from embryos of different ages is presented.  相似文献   

4.
Alphaxalone, the major component of the steroid anaesthetic, Althesin, inhibited the uptake of 45Ca2+ into mitochondria isolated from rat brain. The subcellular distribution of calcium in the brain was measured after intraperitoneal injection of 45Ca2+. The concentration of 45Ca2+ in the brain reached a maximum after 3min, the greatest concentration being found in the mitochondrial fraction. Pre-treatment of rats with Althesin, hexobarbitone or halothane reduced the accumulation of 45Ca2+ by brain mitochondrial fractions. The possible involvment of calcium ions in the mechanism of action of general anaesthetics is discussed.  相似文献   

5.
β-Cell-rich pancreatic islets were microdissected from ob/ob-mice and used for studies of 45Ca uptake and washout. Irrespective of whether the experiments were performed at 21 or 37°C both glucose and phosphate stimulated the net uptake of lanthanum-nondisplaceable 45Ca. The stimulatory effect of phosphate was additive to that produced by glucose. 45Ca incorporated in response to phosphate differed from that taken up in the presence of 20 mM glucose in being easily washed out although it was not affected by the glucose concentration of the washing medium. The efflux of 45Ca was reduced after introducing phosphate into a medium used to perifuse islets which had accumulated 45Ca in response to 20 mM glucose. This suggests that the outward calcium transport can be influenced also by intracellular trapping of the cation. The glucose-stimulated insulin release was inhibited by phosphate; an effect reversed by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. It is concluded that a common effect of glucose and phosphate is to trap calcium in the pancreatic β-cells but that there are fundamental differences between their effects on intracellular distribution of calcium and on insulin release.  相似文献   

6.
The intracellular distribution of 45Ca in the rat heart was studied following separate and combined administration of quinidine and propranolol. Both drugs caused an increased uptake of 45Ca in the nuclear-cell membrane fraction but quinidine suppressed the uptake in mitochondrial and microsomal fractions whereas propranolol did not affect the uptake of 45Ca in these fractions. In addition, there was an increase in serum radioactivity noted with quinidine which was not observed with propranolol. Combined treatment resulted in restoration of normal values for blood and mitochondrial fractions and an increased uptake of 45Ca in the microsomal fraction.  相似文献   

7.
R.E. Jeacocke 《BBA》1982,682(2):238-244
The efflux of 45Ca from mammalian slow twitch muscle fibres has been studied to provide a measure of the concentration of free Ca2+ in the sarcoplasm. The kinetically complex early phases of washout of the isotope are succeeded by a prolonged slower phase which exhibits first-order kinetics. This later phase is accelerated by caffeine, by preventing oxidative phosphorylation and also during an isometric contraction, whether this contraction is produced by lowering the temperature or by electrical stimulation. The local anaesthetic tetracaine abolishes the contraction caused by cold and in this case the rate constant for efflux is progressively lowered as the temperature is reduced (Q10 value of 2.3). The removal of external Na+ and Ca2+ reduces the efflux rate constant. Caffeine, sodium removal and the inhibition of oxidative phosphorylation, all potentiate the cold contraction and the associated extra 45Ca efflux. Ca removal causes the cold contraction to become phasic. It appears that caffeine, sodium removal, the inhibition of oxidative phosphorylation and a decrease in temperature to below 10°C are all treatments which, like electrical stimulation, increase the sarcoplasmic free calcium concentration to varying degrees.  相似文献   

8.
The relative importance of heart mitochondria in regulating intracellular [Ca2+] in cardiac muscle is controversial. In a new approach to the question, we have measured the energy-linked 45Ca uptake of an unusual myocardial tissue preparation in which the cells appear to be intact yet the sarcolemmae are highly permeable to exogenous solutes. Inhibitors of mitochondrial energy metabolism were used to estimate the mitochondrial contribution to rate and extent of total cell uptake. At 6.6μM Ca, which is close to the probable intracellular [Ca] range, inhibitors of mitochondrial energy metabolism did not diminish initial rates of 45Ca uptake by myocardial fragments, if ATP was present to drive Ca2+ sequestration by the sarcoplasmic reticulum. The ultimate extent of uptake was reduced somewhat, however. Similar uptake profiles were obtained in the presence of carbonyl cyanide m-chlorophenyl-hydrazone, CN?, and atractyloside, each of which acts at a different locus to inhibit mitochondrial Ca2+ transport. These data suggest that the mitochondria cannot control beat-to-beat [Ca2+] oscillations, because at μM Ca concentrations, the Ca2+ uptake rate of mitochondria insitu is slow in comparison to the extra-mitochondrial (sarcoplasmic reticulum) uptake rate.  相似文献   

9.
1. KCl-induced depolarization resulted in a large stimulation of the 45Ca efflux from both cockroach skeletal muscle and rat ileal smooth muscle. 2. Caffeine (10 mM) induced a large stimulation of 45Ca efflux from skeletal muscle, but a fall in the efflux from ileal muscle, especially if the efflux was previously stimulated by KCl depolarization. 3. Caffeine inhibited calcium uptake by skeletal muscle mitochondria and sarcoplasmic reticulum, was without effect on ileal muscle mitochondria, but significantly increased caclium binding by ileal muscle membrane vesicular preparations. 4. The induction of contractures and stimulation of 45Ca efflux in skeletal muscle by caffeine are clearly related to inhibition of intracellular calcium binding by the sarcoplasmic reticulum and mitochondria. 5. The relaxation of ileal muscle by caffeine and the inhibition of fibre calcium efflux correlate well with caffeine enhancement of intracellular calcium binding. These experiments suggest that the membrane vesicular compartment may be the main agency centrally involved in fibre calcium regulation in this muscle during the contraction-relaxation cycle.  相似文献   

10.
In order to complete preliminary investigations on the subcellular calcium localisation in smooth muscle cells, further experiments are presented using smooth muscle cells from the coronary artery of the pig. The methods used were a precipitation technique using potassium oxalate and autoradiography using 45Ca. In all cases we were able to reproduce the results obtained in our preliminary study. The preparations clearly show calcium oxalate precipitates in the cell membrane, the sarcoplasmic reticulum, the microvesicles, mitochondria and the nucleus membrane. These findings were supported by silver grain distributions in autoradiograms obtained by means of 45Ca. The qualitative results obtained histochemically are in good agreement with estimations of the calcium distribution in subcellular fractions obtained by atomic absorption spectrophotometry.  相似文献   

11.
Summary The distribution of intracellular calcium was determined in isolated kidney cells by kinetic analyses of45Ca fluxes. Isotopic desaturation curves reveal an intracellular calcium compartment with a very slow time constant. The size of this calcium compartment is markedly increased by raising the extracellular calcium, by increasing the extracellular phosphate and may contain up to 99% of the intracellular exchangeable calcium. Accumulation of calcium in this pool is completely abolished by two specific inhibitors of mitochondrial calcium uptake, Antimycin A and Warfarin®. These results suggest that this compartment represents a pool of calcium in the cell mitochondria. The sudden removal of phosphate from the medium immediately stimulates calcium efflux from the cell. Conversely, an increase in medium phosphate immediately inhibits calcium efflux. Both effects are rapidly reversible. Finally, calcium efflux from the cells is stimulated after the cells are exposed to low temperature suggesting that calcium transport out of the cell may be regulated by the cytoplasmic calcium activity. These experiments are consistent with the view that mitochondria play an important role in the control and regulation of cytoplasmic calcium activity and of calcium transport.  相似文献   

12.
Quinine and caffeine effects on 45Ca movements in frog sartorius muscle   总被引:5,自引:1,他引:4  
1 mM caffeine, which produces only twitch potentiation and not contracture in frog sartorius muscle, increases both the uptake and release of 45Ca in this muscle by about 50 %, thus acting like higher, contracture-producing concentrations but less intensely. Quinine increases the rate of release of 45Ca from frog sartorius but not from the Achilles tendon. The thresholds for the quinine effect on 45Ca release and contracture tension are about 0.1 and 0.5 mM, respectively, at pH 7.1. Quinine (2 mM) also doubles the uptake of 45Ca by normally polarized muscle. However, there are variable effects of quinine upon 45Ca uptake in potassium-depolarized muscle. Quinine (2 mM), increases the Ca, Na, and water content of muscle while decreasing the K content. Both caffeine (1 mM) and quinine (2 mM) act to release 45Ca from muscles that have been washed in Ringer''s solution from which Ca was omitted and to which EDTA (5 mM) was added. These results, correlated with those of others, indicate that a basic effect of caffeine and quinine on muscle is to directly release activator Ca2+ from the sarcoplasmic reticulum in proportion to the drug concentration. The drugs may also enhance the depolarization-induced Ca release caused by extra K+ or an action potential. In respect to the myoplasmic Ca2+ released by direct action of the drugs, a relatively high concentration is required to activate even only threshold contracture, but a much lower concentration, added to that released during excitation-contraction coupling, is associated with the condition causing considerable twitch potentiation.  相似文献   

13.
Parameters of the Ca2+-ion transport system by a fragmented sarcoplasmic reticulum isolated from phasic and tonic frog skeletal muscles were investigated under the action of caffeine or caffeine in combination with glycerol. No changes were observed in the Ca-transport system of a light fraction of the sarcoplasmic reticulum under the influence of caffeine and caffeine-glycerol combination. Caffeine reduced the value of Ca/ATP and enhanced the outflux of Ca2+-ions from membrane fragments of the caffeine-sensitive sarcoplasmic reticulum fraction of both the muscles; the combined effect of caffeine and glycerol was analogous to the action of caffeine applied alone. It is concluded that the potentiation of muscle contraction in the presence of glycerol is not due to the excess of Ca-release from the sarcoplasmic reticulum caused by this agent.  相似文献   

14.
Calcium retained at binding sites of the sarcoplasmic reticulum membranes isolated from rabbit skeletal muscle requires 10-5 - 10-4 M ATP to exchange with 45Ca added to the medium. The ATP requirement for Ca exchangeability was observed with respect to the "intrinsic" Ca of the reticulum membranes and the fraction of Ca that is "actively" bound in the presence of ATP. Furthermore, a concentration of free Ca in the medium higher than 10-8 M is required for ATP to promote Ca exchangeability. This exchangeability is not influenced by caffeine, quinine, procaine, and tetracaine, and Ca that is either nonexchangeable (in the absence of ATP) or exchangeable (in the presence of ATP) is released by 1–5 mM quinine or tetracaine, but neither caffeine (6 mM) nor procaine (2–5 mM) has this effect. Quinine or tetracaine also releases Ca and Mg bound passively to the reticulum membranes. A possible role of ATP in maintaining the integrity of cellular membranes is discussed, and the effects of caffeine, quinine, and of local anesthetics on the binding of Ca by the isolated reticulum are related to the effects of these agents on 45Ca fluxes and on the twitch output observed in whole muscles.  相似文献   

15.
A H Burns  W J Reddy 《Life sciences》1976,18(3):319-328
The uptake and distribution of 14C and 125I-labelled thyroxine was studied in ventricular myocytes, isolated from the hearts of male Sprague-Dawley rats. Equilibrium was established between the radioactivity of the incubation medium and the cells within 15 minutes. At equilibrium the concentration of 14C-thyroxine in the cells was approximately 50 times the concentration in the incubation medium. Fractionation of the cells revealed that the equilibrium had been attained for all fractions except the nuclear. The radioactivity of the nuclear fraction showed an increase for at least 60 minutes of incubation. At equilibrium the distribution of radioactivity was: Soluble fraction 51.3%, Mitochondria 33.6%, Microsomal 7.0% and Nuclear 7.0%. When the values for these fractions were corrected for mitochondrial contamination the specific activity (CPM/MG protein) of the mitochondrial fraction was by far the highest, exceeding the next highest fraction (the supernatant) by an order of magnitude. The presence of equimolar amounts of triiodothyronine produced little change in the pattern of uptake of the label by any of the cell fractions. The uptake of labelled thyroxine was profoundly affected by the presence of calcium in the media. The uptake of 14C-thyroxine by cells incubated in media containing 1.25mM calcium was less after 60 minutes than in cells incubated in calcium free buffer. Fractionation of the cells revealed that the amount of label bound to the mitochondria of cells in calcium containing medium was significantly increased while the radioactivity bound to the other cellular fractions was decreased. The data indicate that the cell fraction with the highest specific activity was the mitochondria. The relation of these findings to some of the current theories of thyroid hormone action is discussed.  相似文献   

16.
Summary The effects of metabolic and respiratory acidosis and alkalosis on cellular calcium metabolism were studied in rat kidney cells dispersed with collagenase. In both types of acidosis, the intracellular pH, total cell calcium, and the cell relative radioactivity after 60 min of labeling are significantly depressed. Kinetic analysis of45Ca desaturation curves shows that acidosis decreases all three cellular calcium pools and depresses calcium fluxes between the superficial and cytosolic pools and between the cytosolic and mitochondrial pools. In alkalosis the intracelluar pH, the total cell calcium, and the cell relative radioactivity are significantly increased. Kinetic studies show that in alkalosis, only the mitochondrial pool is consistently increased. Calcium exchange between the mitochondrial and cytosolic pool is increased in metabolic alkalosis only. These results suggest that hydrogen ion is an important modulator of calcium metabolism, and that the intracellular pH rather than extracellular pH is the critical factor in determining the calcium status of cells during altered acid-base conditions.  相似文献   

17.
Calcium distribution and exchange in the rat uterus   总被引:5,自引:0,他引:5       下载免费PDF全文
The calcium content and distribution of the rat uterus were determined employing flame photometry and Ca45 determinations. The total uterine calcium concentration was found to be 2.25 millimoles (mmoles) per kilogram wet weight, 0.45 of which was inexchangeable. The exchangeable Ca could be divided into 0.8 mmole/kg wet weight extracellular and 1.0 mmole/kg wet weight intracellular. The concentration of ionic Ca in rat serum was obtained by equilibrium dialysis as 1.5 mM or 53 % of the total serum Ca. The observed Ca distribution required that its active transport be postulated, since the membrane was shown to be permeable to Ca and the internal Ca concentration was far below its electrochemical equilibrium value. Metabolic inhibition by iodoacetate or dinitrophenol caused a net Ca uptake, but cooling to 4°C and ouabain did not. Iodoacetate did not affect the Ca45 efflux, but did increase the influx, suggesting that active Ca transport is accomplished by an exclusion mechanism. In experiments with varied external sodium concentrations, no evidence was obtained that sodium competes with calcium for inward transport. Cellular Ca binding was measured under conditions of prolonged metabolic inhibition, which abolished both active transport and the membrane potential. The association constants obtained were compatible with intracellular Ca binding to proteins, but insufficient to account for the low level of intracellular ionic Ca believed essential for relaxation. Hence metabolically dependent intracellular Ca binding was postulated. The Ca45 efflux was slowed down by Ca-free efflux media. The presence of Sr or EDTA could completely prevent this decrease in efflux rate, and Ba could partly prevent it. Changes in Mg and Na concentration did not affect the rate of Ca45 efflux. A model to explain Ca exchange across smooth muscle membranes has been proposed.  相似文献   

18.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Summary The distribution of calcium between isolated rat liver mitochondria and the extramitochondrial medium at 37°C and in the presence of 2mm inorganic phosphate, 3mm ATP, 0.05 or 1.1mm free magnesium and a calcium buffer, nitrilotriacetic acid, was investigated using a45Ca exchange technique. The amounts of40Ca in the mitochondria and medium were allowed to reach equilibrium before initiation of the measurement of45Ca exchange. At 0.05mm free magnesium and initial extramitochondrial free calcium concentrations of between 0.15 and 0.5 m, the mitochondria accumulated calcium until the extramitochondrial free calcium concentration was reduced to 0.15 m. Control experiments showed that the mitochondria were stable under the incubation conditions employed. The45Ca exchange data were found to be consistent with a system in which two compartments of exchangeable calcium are associated with the mitochondria. Changes in the concentration of inorganic phosphate did not significantly affect the45Ca exchange curves, whereas an increase in the concentration of free magnesium inhibited exchange. The maximum rate of calcium outflow from the mitochondria was estimated to be 1.7 nmol/min per mg of protein, and the value ofK 0.5 for intramitochondrial exchangeable calcium to be about 1.6 nmol per mg of protein. Ruthenium Red decreased the fractional transfer rate for calcium inflow to the mitochondria while nupercaine affected principally the fractional transfer rates for the transfer of calcium between the two mitochondrial compartments. The use of the incubation conditions and45Ca exchange technique described in this report for studies of the effects of agents which may alter mitochondrial calcium uptake or release (e.g., the pre-treatment of cells with hormones) is briefly discussed.  相似文献   

20.
1. Isolated fat-cells and intact epididymal fat-pads were incubated in medium containing 45Ca2+ and the incorporation of 45Ca into mitochondrial and extramitochondrial fractions was studied. Redistribution of 45Ca between these fractions was essentially prevented by the addition of EGTA [ethanedioxybis(ethylamine)tetra-acetate] and Ruthenium Red to the sucrose-based extraction medium. 2. Incorporation of 45Ca into mitochondrial fractions of both fat-cells and fat-pads was found to be complete within 2-5 min, suggesting that mitochondria contain a pool of calcium in rapid isotopic exchange with extracellular Ca2+. This pool was about 20 times larger in mitochondria within fat-cells than within fat-pads. In fat-cells, 45Ca incorporation into the mitochondrial fraction accounted for about 34% of the total 45Ca incorporation into cells after 20 min and about 50% of the total mitochondrial calcium content measured by atomic absorption; values in fat-pads were about 7 and 20% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号