首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rattray AJ  Shafer BK  McGill CB  Strathern JN 《Genetics》2002,162(3):1063-1077
The DNA synthesis associated with recombinational repair of chromosomal double-strand breaks (DSBs) has a lower fidelity than normal replicative DNA synthesis. Here, we use an inverted-repeat substrate to monitor the fidelity of repair of a site-specific DSB. DSB induction made by the HO endonuclease stimulates recombination >5000-fold and is associated with a >1000-fold increase in mutagenesis of an adjacent gene. We demonstrate that most break-repair-induced mutations (BRIMs) are point mutations and have a higher proportion of frameshifts than do spontaneous mutations of the same substrate. Although the REV3 translesion DNA polymerase is not required for recombination, it introduces approximately 75% of the BRIMs and approximately 90% of the base substitution mutations. Recombinational repair of the DSB is strongly dependent upon genes of the RAD52 epistasis group; however, the residual recombinants present in rad57 mutants are associated with a 5- to 20-fold increase in BRIMs. The spectrum of mutations in rad57 mutants is similar to that seen in the wild-type strain and is similarly affected by REV3. We also find that REV3 is required for the repair of MMS-induced lesions when recombinational repair is compromised. Our data suggest that Rad55p/Rad57p help limit the generation of substrates that require pol zeta during recombination.  相似文献   

2.
3.
O6-methylguanine (O6-MeG) DNA methyltransferase (MTase) removes the methyl group from a DNA lesion and directly restores DNA structure. It has been shown previously that bacterial and yeast cells lacking such MTase activity are not only sensitive to killing and mutagenesis by DNA methylating agents, but also exhibit an increased spontaneous mutation rate. In order to understand molecular mechanisms of endogenous DNA alkylation damage and its effects on mutagenesis, we determined the spontaneous mutational spectra of the SUP4-o gene in various Saccharomyces cerevisiae strains. To our surprise, the mgt1 mutant deficient in DNA repair MTase activity exhibited a significant increase in G:C-->C:G transversions instead of the expected G:C-->A:T transition. Its mutational distribution strongly resembles that of the rad52 mutant defective in DNA recombinational repair. The rad52 mutational spectrum has been shown to be dependent on a mutagenesis pathway mediated by REV3. We demonstrate here that the mgt1 mutational spectrum is also REV3-dependent and that the rev3 deletion offsets the increase of the spontaneous mutation rate seen in the mgt1 strains. These results indicate that the eukaryotic mutagenesis pathway is directly involved in cellular processing of endogenous DNA alkylation damage possibly by the translesion bypass of lesions at the cost of G:C-->C:G transversion mutations. However, the rev3 deletion does not affect methylation damage-induced killing and mutagenesis of the mgt1 mutant, suggesting that endogenous alkyl lesions may be different from O6-MeG.  相似文献   

4.
Primary structure of the RAD52 gene in Saccharomyces cerevisiae.   总被引:17,自引:9,他引:17       下载免费PDF全文
  相似文献   

5.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

6.
We have examined the effects of RAD52 overexpression on methyl methanesulfonate (MMS) sensitivity and spontaneous mitotic recombination rates. Cells expressing a 10-fold excess of RAD52 mRNA from the ENO1 promoter are no more resistant to MMS than are wild-type cells. Similarly, under the same conditions, the rate of mitotic recombination within a reporter plasmid does not exceed that measured in wild-type cells. This high level of expression is capable of correcting the defects of rad52 mutant cells in carrying out repair and recombination. From these observations, we conclude that wild-type amounts of Rad52 are not rate limiting for repair of MMS-induced lesions or plasmid recombination. By placing RAD52 under the control of the inducible GAL1 promoter, we find that induction results in a 12-fold increase in the fraction of recombinants within 4 h. After this time, the fraction increases less rapidly. When RAD52 expression is quickly repressed during induction, the amount of RAD52 mRNA decreases rapidly and no nascent recombinants are formed. This result suggests a short active half-life for the protein product. Induction of RAD52 in G1-arrested mutant cells also causes a rapid increase in recombinants, suggesting that replication is not necessary for plasmid recombination.  相似文献   

7.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.  相似文献   

8.
SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shown that RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion of the SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to the malfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.  相似文献   

9.
10.
Xiao W  Chow BL  Broomfield S  Hanna M 《Genetics》2000,155(4):1633-1641
The RAD6 postreplication repair and mutagenesis pathway is the only major radiation repair pathway yet to be extensively characterized. It has been previously speculated that the RAD6 pathway consists of two parallel subpathways, one error free and another error prone (mutagenic). Here we show that the RAD6 group genes can be exclusively divided into three rather than two independent subpathways represented by the RAD5, POL30, and REV3 genes; the REV3 pathway is largely mutagenic, whereas the RAD5 and the POL30 pathways are deemed error free. Mutants carrying characteristic mutations in each of the three subpathways are phenotypically indistinguishable from a single mutant such as rad18, which is defective in the entire RAD6 postreplication repair/tolerance pathway. Furthermore, the rad18 mutation is epistatic to all single or combined mutations in any of the above three subpathways. Our data also suggest that MMS2 and UBC13 play a key role in coordinating the response of the error-free subpathways; Mms2 and Ubc13 form a complex required for a novel polyubiquitin chain assembly, which probably serves as a signal transducer to promote both RAD5 and POL30 error-free postreplication repair pathways. The model established by this study will facilitate further research into the molecular mechanisms of postreplication repair and translesion DNA synthesis. In view of the high degree of sequence conservation of the RAD6 pathway genes among all eukaryotes, the model presented in this study may also apply to mammalian cells and predicts links to human diseases.  相似文献   

11.
12.
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54.  相似文献   

13.
Coïc E  Feldman T  Landman AS  Haber JE 《Genetics》2008,179(1):199-211
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.  相似文献   

14.
In Saccharomyces cerevisiae, replication through DNA lesions is promoted by Rad6-Rad18-dependent processes that include translesion synthesis by DNA polymerases eta and zeta and a Rad5-Mms2-Ubc13-controlled postreplicational repair (PRR) pathway which repairs the discontinuities in the newly synthesized DNA that form opposite from DNA lesions on the template strand. Here, we examine the contributions of the RAD51, RAD52, and RAD54 genes and of the RAD50 and XRS2 genes to the PRR of UV-damaged DNA. We find that deletions of the RAD51, RAD52, and RAD54 genes impair the efficiency of PRR and that almost all of the PRR is inhibited in the absence of both Rad5 and Rad52. We suggest a role for the Rad5 pathway when the lesion is located on the leading strand template and for the Rad52 pathway when the lesion is located on the lagging strand template. We surmise that both of these pathways operate in a nonrecombinational manner, Rad5 by mediating replication fork regression and template switching via its DNA helicase activity and Rad52 via a synthesis-dependent strand annealing mode. In addition, our results suggest a role for the Rad50 and Xrs2 proteins and thereby for the MRX complex in promoting PRR via both the Rad5 and Rad52 pathways.  相似文献   

15.
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51.  相似文献   

16.
The Polζ translesion synthesis (TLS) DNA polymerase is responsible for over 50% of spontaneous mutagenesis and virtually all damage-induced mutagenesis in yeast. We previously demonstrated that reversion of the lys2ΔA746 −1 frameshift allele detects a novel type of +1 frameshift that is accompanied by one or more base substitutions and depends completely on the activity of Polζ. These ‘complex’ frameshifts accumulate at two discrete hotspots (HS1 and HS2) in the absence of nucleotide excision repair, and accumulate at a third location (HS3) in the additional absence of the translesion polymerase Polη. The current study investigates the sequence requirements for accumulation of Polζ-dependent complex frameshifts at these hotspots. We observed that transposing 13 bp of identity from HS1 or HS3 to a new location within LYS2 was sufficient to recapitulate these hotspots. In addition, altering the sequence immediately upstream of HS2 had no effect on the activity of the hotspot. These data support a model in which misincorporation opposite a lesion precedes and facilitates the selected slippage event. Finally, analysis of nonsense mutation revertants indicates that Polζ can simultaneously introduce multiple base substitutions in the absence of an accompanying frameshift event.  相似文献   

17.
18.
Kozhina TN  Korolev VG 《Genetika》2012,48(4):551-555
Within eukaryotes, tolerance to DNA damage is determined primarily by the repair pathway controlled by the members of the RAD6 epistasis group. Genetic studies on a yeast Saccharomyces cerevisiae model showed that the initial stage of postreplication repair (PRR), i.e., initiation of replication through DNA damage, is controlled by Rad6-Rad18 ubiquitin-conjugating enzyme complex. Mutants of these genes are highly sensitive to various genotoxic agents and reduce the level of induced mutagenesis. In this case, the efficiency of mutagenesis suppression depends on the type of damage. In this study we showed that DNA damage induced by hydrogen peroxide at the same mutagen doses causes significantly more mutations and lethal events in the rad18 mutant cells compared to control wild-type cells.  相似文献   

19.
The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.  相似文献   

20.
The SGS1 gene of Saccharomyces cerevisiae is homologous to the genes that are mutated in Bloom's syndrome and Werner's syndrome in humans. Disruption of SGS1 results in high sensitivity to methyl methanesulfonate (MMS), poor sporulation, and a hyper-recombination phenotype including recombination between heteroalleles. In this study, we found that SGS1 forms part of the RAD52 epistasis group when cells are exposed to MMS. Exposure to DNA-damaging agents causes a striking, Rad52-dependent, increase in heteroallelic recombination in wild-type cells, but not in sgs1 disruptants. However, in the absence of DNA damage, the frequency of heteroallelic recombination in sgs1 disruptants was several-fold higher than in wild-type cells, as described previously. These results imply a function for Sgs1: it acts to suppress spontaneous heteroallelic recombination, and to promote DNA damage-induced heteroallelic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号