首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
小鼠基因剔除动物模型越来越广泛地应用于哺乳动物基因功能与疾病的研究。然而每当胚胎干细胞同源重组的效率过低时,鉴定与分离带有定位变异的阳性克隆就会既费力又昂贵。本工作以类固醇受体共激活子基因为例,研究出一种快速鉴定阳性克隆的新方法。在构造重组载体时,将一段编码半乳糖苷酶的DNA序列整合到共激活子基因的蛋白起始码后面。于是,在干细胞内同源重组发生以后,半乳糖苷酶的表达就会受控于内源性共激活子基因的启动子。在载体与半乳糖苷酶DNA随机整合的大多数非特异克隆中,因为缺少启动子或由于不正确的氨基酸编码连接,导致合成半乳糖苷酶的可能性较小。因此,在半乳糖苷酶染色阳性的克隆中,具有特异突变的阳性克隆可以富集30倍以上。从半乳糖苷酶的阳性克隆中,再用Southern Blot方法进一步确认带有基因剔除的阳性克隆就大大减少了工作量。因为半乳糖苷酶的细胞化学染色法简便而可靠,所以在重组效率低时,可以用这种方法在短期内筛选大量克隆。但是应该注意,应用该方法的前提条件是所研究的基因必须在胚胎干细胞内表达。这些方法更为重要的意义在于当带有基因剔除的胚胎干细胞发育成小鼠后,半乳糖苷酶的组化染色法可以轻而易举地用来揭示所研究基因在动物不同组织与细胞中的表达水平。  相似文献   

3.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

4.
The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat.  相似文献   

5.
The identification of correctly targeted embryonic stem (ES) cell clones from among the large number of random integrants that result from most selection paradigms remains an important hurdle in the generation of animals bearing homologously targeted transgenes. Given the limitations inherent to Southern blotting and standard PCR, we utilized quantitative real-time polymerase chain reaction (qPCR) to rapidly identify murine ES cell clones containing insertions at the correct genomic locus. Importantly, this approach is useful for screening ES clones from conditional/insertional “knock-in” strategies in which there is no loss of genetic material. Simple validation avoids the generation of assays prone to false negative results. In this method, probe and primer sets that span an insertion site detect and quantify the unperturbed gene relative to an irrelevant reference gene, allowing ES cell clones to be screened for loss of detection of one copy of the gene (functional loss of homozygousity (LOH)) that occurs when the normal DNA is disrupted by the insertion event. Simply stated, detected gene copy number falls from two to one in correctly targeted clones. We have utilized such easily designed and validated qPCR LOH assays to rapidly and accurately identify insertions in multiple target sites (including the Lepr and mTOR loci) in murine ES cells, in order to generate transgenic animals.  相似文献   

6.
Tong C  Huang G  Ashton C  Wu H  Yan H  Ying QL 《遗传学报》2012,39(6):275-280
  相似文献   

7.
Gene targeting is a powerful method of specifically modifying genes of interest. It has been most consistently successful in the 129 mouse strain, because the embryonic stem (ES) cells of 129 mice are relatively easy to culture. In gene-targeting experiments, the use of ES cell-derived genomic clones as a source of homology arms is desirable, because the genetic variation among mouse strains results in a reduced frequency of homologous recombination. In this study, we generated an arrayed mouse 129/Ola BAC library derived from E14.1 ES cells, one of the frequently used ES cell lines. More than 135,000 BAC clones with a mean insert size of 110 kb were isolated. This library is estimated to represent a 5.5-fold mouse genome coverage. The BAC clones can be screened within 2 days by PCR. Considering that all 8 loci so far examined are contained in this BAC library, we believe it will be a useful resource for gene targeting studies using E14 ES cells as well as for genome analysis.  相似文献   

8.
Following gene targeting, a loxP-neo-loxP cassette was introduced into ES cells. The presence of a selectable marker such as neo in the targeted allele may result in gene interference in flox mice or unexpected phenotypes due to genetic ambiguity in direct knockout mice. Typically, the neo cassette is selectively removed by transient expression of the Cre recombinase in targeted ES cell. However, this method involves a tedious process of selecting, expanding, and screening ES cell clones which may compromise germline competency. Here, we describe a novel method of combining adenovirus-Cre mediated gene recombination with ES gene targeting to facilitate efficient loxP-neo-loxP removal in ES cells. We demonstrate that adenovirus-Cre infected ES cells can retain their germline competency. The procedures described here facilitate a rapid genetic manipulation of ES cells to obtain neo-free knockout animals, multiple gene targeting, homozygous mutant ES cells ideal for in vitro characterization, or Rag-deficient blastocyst complementation.  相似文献   

9.
Embryonic stem (ES) cell technology allows modification of the mouse germline from large deletions and insertions to single nucleotide substitutions by homologous recombination. Identification of these rare events demands an accurate and fast detection method. Current methods for detection rely on Southern blotting and/or conventional PCR. Both the techniques have major drawbacks, Southern blotting is time-consuming and PCR can generate false positives. As an alternative, we here demonstrate a novel approach of Multiplex Ligation-dependent Probe Amplification (MLPA) as a quick, quantitative and reliable method for the detection of homologous, non-homologous and incomplete recombination events in ES cell clones. We have adapted MLPA to detect homologous recombinants in ES cell clones targeted with two different constructs: one introduces a single nucleotide change in the PCNA gene and the other allows for a conditional inactivation of the wild-type PCNA allele. By using MLPA probes consisting of three oligonucleotides we were able to simultaneously detect and quantify both wild-type and mutant alleles.  相似文献   

10.
Targeted insertion of a plasmid by homologous recombination was demonstrated in zebrafish ES cell cultures. Two selection strategies were used to isolate ES cell colonies that contained targeted plasmid insertions in either the no tail or myostatin I gene. One selection strategy involved the manual isolation of targeted cell colonies that were identified by the loss of fluorescent protein gene expression. A second strategy used the diphtheria toxin A-chain gene in a positive-negative selection approach. Homologous recombination was confirmed by PCR, sequence and Southern blot analysis and colonies isolated using both selection methods were expanded and maintained for multiple passages. The results demonstrate that zebrafish ES cells have potential for use in a cell-mediated gene targeting approach.  相似文献   

11.
12.
An approach is described to modify yeast artificial chromosomes (YACs) with cassettes that can be easily excised for embryonic stem (ES) cell gene targeting experiments. YAC targeting technology (YTT) uses the WIBR/MIT-820 C57BL/6-mapped YAC library derived from the C57BL/6 mouse as the starting point for Internet- or PCR-based clone isolation, although in principle any YAC system can be used. Homologous recombination is initially performed in yeast using cassettes that function in Saccharomyces cerevisiae, Escherichia coli, and ES cells, followed by cloning or conversion of the targeted locus into a plasmid. The completed targeting vector can be transfected into C57BL/6 ES cells and clones selected with G418 followed by injection into Balb/c blastocysts. YTT increases the speed of targeting vector construction and obviates the need for extensive backcrossing to the C57BL/6 background.  相似文献   

13.
小鼠MPI基因的打靶载体的构建和筛选   总被引:1,自引:0,他引:1  
目的 构建小鼠MPI基因的基因打靶载体转染ES细胞 ,构建用于同源重组筛选的对照载体。方法根据计算机分析小鼠MPI基因的基因组序列 ,构建用于同源重组载体的长臂和短臂并且转染小鼠ES细胞 ,经抗性筛选后得到阳性克隆 ,抽提基因组DNA后用PCR的方法进行重组子的初步筛选。结果 成功构建了MPI基因的基因打靶载体并且摸索了用PCR的方法进行重组细胞初步筛选的方法。结论 这个载体的构建为MPI基因功能的研究打下了基础 ,同时用PCR方法进行初步筛选大大减少了Southern杂交的工作量 ;利用实验小鼠来研究印迹基因是非常有效的方法 ,它不仅能了解印迹基因在小鼠生长发育过程中的功能 ,而且进而有助于研究人的相应印迹区。  相似文献   

14.
Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gene targeting studies. We find that a DSB introduced by I-Scel stimulates gene targeting at a selectable neo locus at least 50-fold. The enhanced level of targeting is achieved by transient expression of the I-Scel endonuclease. In 97% of targeted clones a single base pair polymorphism in the transfected homologous fragment was incorporated into the target locus. Analysis of the targeted locus demonstrated that most of the homologous recombination events were 'two-sided', in contrast to previous studies in 3T3 cells in which 'one-sided' homologous events predominated. Thus ES cells may be more faithful in incorporating homologous fragments into their genome than other cells in culture.  相似文献   

15.
In contrast to the highly developed genetic modification systems available for manipulating the mouse genome, at this time only simple gain of function modifications can be undertaken in domestic species. Clearly, the greatest barrier to gene targeting in domestic species has been the unavailability of cell lines that can be modified in vitro and still be used to generate a living organism. In the mouse, the embryonic stem (ES) cells and embryonic germ (EG) cells have fulfilled that role. While the nuclear transfer procedures have solved this problem in sheep and cattle, in swine ES and EG cells are still needed. In addition, targeting in domestic species is affected by the need to develop targeting constructs containing isogenic DNA regions. As a result, it is necessary to isolate the gene of interest, sequence required regions, and develop isogenic targeting constructs by technologies such as long-range PCR. On the positive side, enrichment protocols developed in the mouse can be applied to domestic species, thus facilitating the identification of correctly modified cell lines. Hence, progress in mammalian cloning, the development of EG cell lines, and advances in gene targeting presently allows the introduction of precise genetic modifications into the domestic animal genome.  相似文献   

16.
Mata JF  Lopes T  Gardner R  Jansen LE 《PloS one》2012,7(2):e32646
Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines.  相似文献   

17.
为了在小鼠胚胎于细胞(ES)中引起神经细胞cdc2类激酶调节亚基p35Nck5a基因的定点 重复,采用常规的分子克隆技术,构建得到长约12.2kb的基因重复性打靶载体pGDTV。用电 穿孔法将线性化的pGDTV载体转入ES细胞,经过G418和GANC分组药物选择,获得245个 双药物抗性的细胞克隆,细胞存活率为6.22 × 10-5。经PCR和基因组Southern杂交鉴定,2个 ES细胞克隆发生了p35Nck5a基因的重复,同源重组率为5.08×10-7、负向选择系统的应用使 同源重组事件的富集效率提高了7倍。为建立Alzheimer病的转基因小鼠模型打下了基础。  相似文献   

18.
Smads is a new gene family in transforming growth factor-β (TGF- β signaling pathway. Smad2 mutated in multiple human tumors and may be a candidate tumor suppressor gene. Targeted disruption of murine Smad2 gene resulted in embryonic lethality at E6.5. To study the function of Smad2 in vertebrate organgenesis and tumorigenesis, we constructed the Smad2 conditional targeting vector in which two LoxP sequences were placed to flank the sequences encoding the C terminal functional domain of Smad2. The validity of the LoxP sites in the targeting construct was tested in E. coli that express the Cre recombinase constitutively. The vector was electropo-rated into ES cells and 3 targeted ES cell clones were obtained by Southern blot screening. Targeted ES cells were introduced into C57BL/6J blastocysts by microinjection to generate germ-line chimeras. Genotyping analysis showed that 2 progeny among these chimeras carried the Smad2 conditional targeted allele. The establishment of Smad2 conditional gene targetin  相似文献   

19.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

20.
The germline transmission (g.l.t.) of gene trap or gene targeted mutations by ES-cell-derived chimaeric mice is a crucial step in the generation of stable transgenic lines. The wild-type ES cell lines CJ7, D3 and R1 of different passage numbers and their transfected clone-descendants generated in gene targeting or gene trap experiments were tested for their ability to colonize the germline. The maximal g.l.t. age for wild-type ES cells was equal to passage 26 and for transfected clones was equivalent to passage 32 of parental lines. It is shown that wild-type ES cells of less than a passage 15 should be used for effective production of transgenic g.l.t. clones. A simple system is outlined to evaluate the probability of g.l.t. on the basis of the chimaeric progeny obtained  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号