共查询到20条相似文献,搜索用时 39 毫秒
1.
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways. 相似文献
2.
Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells 总被引:7,自引:0,他引:7
Intracellular trafficking and localization of proteins can now be efficiently visualized by fusion of a polypeptide to the green fluorescent protein (GFP). Many spectral variants of this reagent are now available, providing powerful tools for studies in living cells. This approach is particularly useful for members of the steroid/nuclear receptor superfamily, since these molecules frequently undergo rapid subcellular redistribution on ligand activation. A major roadblock in the application of this technology concerns problems associated with transient transfections. This technique produces cell populations that are highly heterogeneous with respect to the newly introduced protein and usually contain the protein in a highly overexpressed state. In addition, long-term studies related to cell cycle and cellular differentiation are essentially impossible with this approach. These problems can be overcome by introduction of the GFP fusion into cells under appropriate induction control. We describe application of the tetracycline regulatory system to inducible control of a glucocorticoid receptor (GR)/GFP chimera. Intracellular concentrations of GFP-GR can be very effectively controlled in this system, providing an ideal environment in which to study subcellular trafficking of the receptor and interactions with a variety of intracellular targets. 相似文献
3.
Day RN Davidson MW 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(5):341-350
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or F?rster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. 相似文献
4.
Geva-Zatorsky N Issaeva I Mayo A Cohen A Dekel E Danon T Cohen L Liron Y Alon U Eden E 《Nature protocols》2012,7(4):801-811
Protein removal has a central role in numerous cellular processes. Obtaining systematic measurements of multiple protein removal rates is necessary to understand the principles that govern these processes, but it is currently a major technical challenge. To address this, we developed 'bleach-chase', a noninvasive method for measuring the half-lives of multiple proteins at high temporal resolution in living cells. The method uses a library of annotated human reporter cell clones, each with a unique fluorescently tagged protein expressed from its native chromosomal location. In this protocol, we detail a simple procedure that bleaches the cells and uses time-lapse fluorescence microscopy and automated image analysis to systematically measure the half-life dynamics of multiple proteins. The duration of the protocol is 4-5 d. The method may be applicable to a wide range of fluorescently tagged proteins and cell lines. 相似文献
5.
Robenek H Buers I Hofnagel O Lorkowski S Severs NJ 《Journal of cellular and molecular medicine》2009,13(7):1381-1390
GFP-tagging is widely used as a molecular tool to localize and visualize the trafficking of proteins in cells but interpretation is frequently limited by the low resolution afforded by fluorescence light microscopy. Although complementary thin-section immunogold electron microscopic techniques go some way in aiding interpretation, major limitations, such as relatively poor structural preservation of membrane systems, low labelling efficiency and the two-dimensional nature of the images, remain. Here we demonstrate that the electron microscopic technique freeze-fracture replica immunogold labelling overcomes these disadvantages and can be used to define, at high resolution, the precise location of GFP-tagged proteins in specific membrane systems and organelles of the cell. Moreover, this technique provides information on the location of the protein within the phospholipid bilayer, potentially providing insight into mis-orientation of tagged proteins compared to their untagged counterparts. Complementary application of the freeze-fracture replica immunogold labelling technique alongside conventional fluorescence microscopy is seen as a novel and valuable approach to verification, clarification and extension of the data obtained using fluorescent-tagged proteins. The application of this approach is illustrated by new findings on PAT-family proteins tagged with GFP transfected into fibroblasts from patients with Niemann-Pick type C disease. 相似文献
6.
7.
Nearly every major process in a cell is carried out by assemblies of multiple dynamically interacting protein molecules. To study multi-protein interactions within such molecular machineries, we have developed a fluorescence microscopy method called three-chromophore fluorescence resonance energy transfer (3-FRET). This method allows analysis of three mutually dependent energy transfer processes between the fluorescent labels, such as cyan, yellow and monomeric red fluorescent proteins. Here, we describe both theoretical and experimental approaches that discriminate the parallel versus the sequential energy transfer processes in the 3-FRET system. These approaches were established in vitro and in cultured mammalian cells, using chimeric proteins consisting of two or three fluorescent proteins linked together. The 3-FRET microscopy was further applied to the analysis of three-protein interactions in the constitutive and activation-dependent complexes in single endosomal compartments. These data highlight the potential of 3-FRET microscopy in studies of spatial and temporal regulation of signaling processes in living cells. 相似文献
8.
The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). 总被引:32,自引:0,他引:32
A highly sensitive television camera (silicon intensifier target) has been combined with fluorescence microscopy to examine living cultured cells. This system is termed Video Intensification Microscopy (VIM). By using very small amounts of excitation light, one limits the damage to living cells from excessive illumination and is able to visualize fluorescence probes for periods up to 24 hr without bleaching. With VIM, the cellular uptake and fate of two rhodamine-labeled proteins, concanavalin A and alpha2 macroglobulin, have been followed for up to 24 hr. These proteins were first located in endocytic vesicles with a low phase density. Later, at 24 hr, alpha2 macroglobulin was located in phase-dense structures, probably secondary lysosomes. Both the fluorescent endocytic vesicles and lysosomes were observed to undergo saltatory motion. VIM combined with fluorescence promises to have a widespread application in the study of the behavior of living cells. 相似文献
9.
van Manen HJ Verkuijlen P Wittendorp P Subramaniam V van den Berg TK Roos D Otto C 《Biophysical journal》2008,94(8):L67-L69
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. 相似文献
10.
Mammalian cells in culture (BHK-21, PtK2, Friend, human flia, and glioma cells) have been observed by reflection contrast microscopy. Images of cells photographed at two different wavelengths (546 and 436 nm) or at two different angles of incidence allowed discrimination between reflected light and light that was both reflected and modulated by interference. Interference is involved when a change in reflected intensity (relative to glass/medium background reflected intensity) occurs on changing either the illumination wavelength or the reflection incidence angle. In cases where interference occurs, refractive indices can be determined at points where the optical path difference is known, by solving the given interference equation. Where cells are at least 50 nm distant from the glass substrate, intensities are also influenced by that distance as well as by the light's angle of incidence and wavelength. The reflected intensity at the glass/medium interface is used as a standard in calculating the refractive index of the cortical cytoplasm. Refractive indices were found to be higher (1.38--1.40) at points of focal contact, where stress fibers terminate, than in areas of close contact (1.354--1.368). In areas of the cortical cytoplasm, between focal contacts, not adherent to the glass substrate, refractive indices between 1.353 and 1.368 were found. This was thought to result from a microfilamentous network within the cortical cytoplasm. Intimate attachment of cells to their substrate is assumed to be characterized by a lack of an intermediate layer of culture medium. 相似文献
11.
Ki S Sugihara F Kasahara K Tochio H Okada-Marubayashi A Tomita S Morita M Ikeguchi M Shirakawa M Kokubo T 《Nucleic acids research》2006,34(6):e51
In unicellular and multicellular eukaryotes, elaborate gene regulatory mechanisms facilitate a broad range of biological processes from cell division to morphological differentiation. In order to fully understand the gene regulatory networks involved in these biological processes, the spatial and temporal patterns of expression of many thousands of genes will need to be determined in real time in living organisms. Currently available techniques are not sufficient to achieve this goal; however, novel methods based on magnetic resonance (MR) imaging may be particularly useful for sensitive detection of gene expression in opaque tissues. This report describes a novel reporter gene system that monitors gene expression dynamically and quantitatively, in yeast cells, by measuring the accumulation of inorganic polyphosphate (polyP) using MR spectroscopy (MRS) or MR spectroscopic imaging (MRI). Because this system is completely non-invasive and does not require exogenous substrates, it is a powerful tool for studying gene expression in multicellular organisms, as well. 相似文献
12.
Multispectral imaging technologies have been widely used in fields of astronomy and remote sensing. Interdisciplinary approaches developed in, for example, the National Aeronautics and Space Administration (NASA, USA), the Jet Propulsion Laboratory (JPL, USA), or the Communications Research Laboratory (CRL, Japan) have extended the application areas of these technologies from planetary systems to cellular systems. Here we overview multispectral imaging systems that have been devised for microscope applications. We introduce these systems with particular interest in live cell imaging. Finally we demonstrate examples of spectral imaging of living cells using commercially available systems with no need for user engineering. 相似文献
13.
T. N. Belyaeva A. V. Salova E. A. Leontieva T. P. Mozhenok E. S. Kornilova S. A. Krolenko 《Cell and Tissue Biology》2009,3(6):551-558
The problem of the nonspecific binding of quantum dots (QDs) with cells is very important, but not fully understood taking
into account the possible application of QDs in medical and fundamental studies. The interactions of untargeted CdSe/ZnS QDs
with isolated frog muscle fibers, HeLa cells, and J774 cells were investigated. The observations were made on living cells
using laser confocal microscopy (Leica TCS SL). QDs covered with polyethylene glycol without any functional reactive groups
with an emission maximum at 565 nm were used in the study. This type of QD is suggested to prevent the interaction of QDs
with biological molecules. It has been shown that QDs do not enter HeLa cells, the T-system, or the sarcoplasm of skeletal
muscle fibers. However, during long-term incubation, J774 cells can take up QDs. The obtained data demonstrated the diversity
of interactions of untargeted QDs with different cell types and are important for understanding problems of nonselective uptake
and cytotoxicity of QDs. 相似文献
14.
Scanning ion conductance microscopy of living cells. 总被引:4,自引:0,他引:4
Currently there is a great interest in using scanning probe microscopy to study living cells. However, in most cases the contact the probe makes with the soft surface of the cell deforms or damages it. Here we report a scanning ion conductance microscope specially developed for imaging living cells. A key feature of the instrument is its scanning algorithm, which maintains the working distance between the probe and the sample such that they do not make direct physical contact with each other. Numerical simulation of the probe/sample interaction, which closely matches the experimental observations, provides the optimum working distance. The microscope scans highly convoluted surface structures without damaging them and reveals the true topography of cell surfaces. The images resemble those produced by scanning electron microscopy, with the significant difference that the cells remain viable and active. The instrument can monitor small-scale dynamics of cell surfaces as well as whole-cell movement. 相似文献
15.
16.
An assay to measure the affinity of proteins for microtubules by quantitative fluorescent microscopy
We report a fluorescence-based assay for measuring the affinity of microtubule binding proteins for microtubules. The affinity of any fluorescently tagged protein for taxol-stabilized microtubules can be measured with this assay. We describe the assay and provide a detailed protocol. Using this assay, we found that the affinity of the Dam1 complex for microtubules is decreased by the presence of free unpolymerized tubulin and is sensitive to the salt concentration in the binding buffer. These effects may account for the previous differences in binding affinities reported. 相似文献
17.
Quantitation of GFP-fusion proteins in single living cells 总被引:9,自引:0,他引:9
18.
Remus TP Zima AV Bossuyt J Bare DJ Martin JL Blatter LA Bers DM Mignery GA 《The Journal of biological chemistry》2006,281(1):608-616
Phosphoinositides participate in many signaling cascades via phospholipase C stimulation, which hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). Destructive chemical approaches required to measure [InsP3] limit spatiotemporal understanding of subcellular InsP3 signaling. We constructed novel fluorescence resonance energy transfer-based InsP3 biosensors called FIRE (fluorescent InsP3-responsive element) by fusing plasmids encoding the InsP3-binding domain of InsP3 receptors (types 1-3) between cyan fluorescent protein and yellow fluorescent protein sequences. FIRE was expressed and characterized in COS-1 cells, cultured neonatal cardiac myocytes, and incorporated into an adenoviral vector for expression in adult cardiac ventricular myocytes. FIRE-1 exhibits an approximately 11% increase in the fluorescence ratio (F530/F480) at saturating [InsP3] (apparent K(d) = 31.3 +/- 6.7 nm InsP3). In COS-1 cells, neonatal rat cardiac myocytes and adult cat ventricular myocytes FIRE-1 exhibited comparable dynamic range and a 10% increase in donor (cyan fluorescent protein) fluorescence upon bleach of yellow fluorescent protein, indicative of fluorescence resonance energy transfer. In FIRE-1 expressing ventricular myocytes endothelin-1, phenylephrine, and angiotensin II all produced rapid and spatially resolved increases in [InsP3] using confocal microscopy (with free [InsP3] rising to approximately 30 nm). Local entry of intracellular InsP3 via membrane rupture by a patch pipette (containing InsP3)in myocytes expressing FIRE-1 allowed detailed spatiotemporal monitoring of intracellular InsP3 diffusion. Both endothelin-1-induced and direct InsP3 application (via pipette rupture) revealed that InsP3 diffusion into the nucleus occurs with a delay and blunted rise of [InsP3] versus cytosolic [InsP3]. These new biosensors allow studying InsP3 dynamics at high temporal and spatial resolution that will be powerful in under-standing InsP3 signaling in intact cells. 相似文献
19.
20.
F?rster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation. 相似文献