首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of two SH-groups in the molecule of formate dehydrogenase by dithiobisnitrobenzoate or to dacetamide results in the enzyme inactivation. Coenzymes, but not the substrate, protect the enzyme against the inactivation. NAD in the presence of potassium azide completely preserves the enzyme activity. Two SH-groups per enzyme molecule are protected from modification. The Km values for partially inactivated formate dehydrogenase remain constant for both substrates. The enzyme with modified SH-groups does not bind conezymes. The pH-dependence of the inactivation rate reveals the ionizable group with pK 9.6 (25 degrees C). The involvement of essential SH-groups in coenzyme binding is discussed.  相似文献   

2.
The properties of SH-groups of mitochondrial creatine kinase existing in solution as a hexamer with Mr of (240 +/- 12) X 10(3) Da, were investigated. The number and reactivity of SH-groups by specific modifiers--[5.5'-dithiobis-(2-nitrobenzoic acid), DTNB; 7-chloro-4-nitrobenzo-2-oxo-1.3-diazol, NBD-Cl; 2.2'-dithiopyridine, DTP] were determined. It was found that each subunit of the enzyme hexameric molecule contains two modified SH-groups, only one of which is protected against modification by Mg-ADP, Mg-ATP as well as during the formation of the transition state analog (TSA)--E-Mg X ADP-NO3-creatine--and is essential for the enzyme activity. These six essential SH-groups within the hexameric molecule of mitochondrial creatine kinase may be classified into two groups according to the rate of their interaction with DTNB, NBD-Cl and DTP. The rate constants of modification of three fast and three slow essential SH-groups differ 4-10 times. The kinetics of enzyme inactivation by iodoacetamide (IAA) is biphasic; each phase is characterized by a 50% loss of activity. The inactivation constants differ 30 times; both phases being protected by TSA; consequently, the inactivation is caused by the binding of IAA to the essential SH-groups. The unequal reactivity of essential SH-groups seems to be preexisting. Using a computer analysis, the dependence of the amount of residual activity on the number of modified SH-groups by NBD-Cl and DTNB was studied. The interaction of NBD-Cl and DTNB with the most reactive essential SH-groups in half of the subunits results in the inactivation of these subunits as well as in partial or complete inactivation of the other half of the non-modified subunits. The degree of inactivation of the latter 50% of subunits strongly depends on the nature of the modifier. The inactivating effect of the bound modifier is translated from one subunit to another in one direction. The experimental results point to asymmetrical association of mitochondrial creatine kinase subunits.  相似文献   

3.
An electrophoretically homogeneous preparation of the NAD kinase activating factor was isolated from rabbit liver and its physico-chemical properties were investigated. The similarity of molecular weights of the activator subunit and hexamer, pI values, the number of SH-groups to the corresponding parameters for glutamate dehydrogenase and the glutamate dehydrogenase activity demonstrated by this factor allowed for the identification of the NAD kinase activating factor as glutamate dehydrogenase. Using three independent methods, the formation of the NAD kinase--glutamate dehydrogenase complex was shown. Both the oligomeric and monomeric (subunit) forms of NAD kinase were found to be able to form complexes with glutamate dehydrogenase.  相似文献   

4.
In native nonactivated phosphorylase kinase [14C] iodacetamide interacts with 50 cysteinyl residues per enzyme molecule (alpha beta gamma delta)4. According to their reactivity towards iodacetamide these residues can be classified into 3 groups. The most reactive cysteinyl residues are involved in the enzyme activation caused by modification of SH-groups. The enzyme inhibition is biphasic. The fast and slow inactivation reactions follow the pseudo-first order kinetics. The rate of inactivation is increased by Ca2+. Mg-ATP effectively protects the enzyme against the inactivation and chemical modification of three SH-groups per protomer (apha beta gamma delta). The kinetics of inactivation and of the [14C] iodacetamide label incorporation demonstrate that two cysteinyl residues per enzyme protomer (alpha beta gamma delta) are essential for the enzyme activity. These residues are located near the ATP-binding site of the beta and gamma subunits of phosphorylase kinase.  相似文献   

5.
The purified preparations of glyceraldehyde-3-phosphate dehydrogenase isolated from frog and pike skeletal muscles were found homogenous under polyacrylamide gel electrophoresis. Their amino acid composition is similar to that of glyceraldehyde-3-phosphate dehydrogenase from other animal species. The interaction kinetics for frog and pike glyceraldehyde-3-phosphate dehydrogenase SH-groups with 5,5'-dithio-bis-(2-nitrobenzoate) (DTNB) were studied. A negative correlation between the thermal stability of the enzyme preparations from pig, pike, lamprey and frog muscles and the reactivity of their SH-groups with respect to DTNB was observed. NAD at saturating concentrations was found to protect the enzyme from lower vertebrates muscles against thermal inactivation in a lesser degree than does the pig muscle enzyme. The weaker protective effect of NAD was observed for lamprey and frog enzyme preparations, which are characterized by a low SH-group reaction ability. Frog and pike apoenzymes are considerably more resistant to trypsin proteolysis than the pig apoenzyme.  相似文献   

6.
pH-dependency is studied of kinetic parameters of the reaction catalyzed by NAD-dependent formate dehydrogenase from methylotrophic Bacterium spl strain. Values of Km for NAD and formate, and also of maximum reaction rate are found not to change within the pH range from 6 to 9. Role of SH-groups in the development of the enzyme catalytic activity and the effect of different factors on stability of soluble and immobilized enzyme forms are investigated. Molecular weight of the enzyme (70000), extinction coefficient and catalytical constant (6 s-1) are determined.  相似文献   

7.
The effect of 2 mM AlCl3 on NAD+ kinase (E.C. 2.7.1.23) activity was studied using Euglena gracilis strain Z grown heterotrophically in darkness at pH 3.5 in the presence of lactate as sole carbon source. The Al-treatment slowed down the culture growth and suppressed the peak of NAD+ kinase activity, which characterizes the beginning of the exponential phase of growth of the control cell cultures. There are two possible explanations of the Al effect: it 1) either prevents the enzyme activation by the Ca-calmodulin (CaM) complex; or 2) suppresses the CaM-dependent NAD+ kinase form. In Euglena cells, a part of the NAD+ kinase activity is enhanced by EGTA and lowered by Ca2+: this peculiar NAD+ kinase activity is unaffected by the Al treatment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
NAD kinase activity has been found in a soluble, cytoplasmic fraction and in the chloroplasts prepared from green spinach leaves. A small amount of both the cytoplasmic and the chloroplastic NAD kinase activities was retained on a calmodulin-Sepharose affinity column. The cytoplasmic NAD kinase eluted from the affinity column was found to be enhanced by calmodulin in a Ca2+-dependent manner. The chloroplastic enzyme which is located exclusively in the stroma and not in the envelope and thylakoid fractions was not affected by Ca2+ and calmodulin. The stromal fraction of purified chloroplasts contained only a negligible amount of calmodulin, most probably due to cytoplasmic contamination. Based on these data, two different mechanisms for the light-dependent modulation of spinach NAD kinase activity are suggested.  相似文献   

9.
The kinetics of inactivation of the pyruvate dehydrogenase component of the pigeon breast muscle pyruvate dehydrogenase complex in the presence of 5,5'-dithiobis (2-nitrobenzoate) is biphasic. The rate constants for the fast and slow phases of the inactivation reaction are close to those for modification of two classes of SH-groups differing in their reactivities towards the inhibitor. The reaction order with respect to the inhibitor concentration suggests that the two distinct SH-groups are essential for the enzyme activity. Modification of these SH-groups results in inhibition of the overall activity of the pyruvate dehydrogenase complex and of the 2-hydroxyethyl thiamine pyrophosphate - acceptor oxidoreductase activity of its decarboxylating component. Thiamine pyrophosphate exerts a protective effect on the enzyme only at the slow phase of the enzyme inactivation and SH-modification. As a result of interaction between the holoenzyme and pyruvate (or apoenzyme and 2-hydroxyethyl thiamine pyrophosphate) the rate of the enzyme inactivation is increased. This is associated with masking of non-essential SH-groups and with an increase of the accessibility of two essential SH-groups to the inhibitor. The data obtained suggest the interrelationship between the essential SH-groups and the 2-hydroxyethyl thiamine pyrophosphate-acceptor oxidoreductase activity of pyruvate dehydrogenase.  相似文献   

10.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

11.
SH-reagents: tetraethylthiuram disulphide (TETD), 5,5'-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (p-ChMB), N-ethylmaleimide (NEM) were studied for their effect on the aldehyde dehydrogenase activity of mitochondrion (isoenzymes I and II) and microsome (isoenzyme II) fractions of the rat liver. TETD is established to inhibit isoenzyme I and isoenzyme II activity of mitochondrial aldehyde dehydrogenase by 100 and 50%, respectively, and the microsomal enzyme activity by 20%. DTNB and NEM inhibit 30-50% of the activity in two isoforms of mitochondrial aldehyde dehydrogenase having no effect on the enzymic activity in microsomes; p-ChMB inhibits completely the activity of the enzyme under study both in the mitochondrial and microsomal fractions. A conclusion is drawn that SH-groups are very essential for manifestation of the catalytic activity in the NAD+-dependent aldehyde dehydrogenase from mitochondrial and microsomal fractions.  相似文献   

12.
1. Subcellular fractionation of horse polymorphonuclear leukocytes revealed the exclusive location of NAD kinase in the cytosol fraction of the cells. 2. The pH optimum for the enzyme was 7.5 and the apparent Km value for NAD was 2.5 mM. 3. The kinetic parameters of NAD kinase did not change when the cells are stimulated with agents that induce a respiratory burst. 4. The enzyme was activated by Mg2+ and to a lesser extent by Ca2+. 5. NAD kinase was inhibited by EDTA, sulfhydryl reagents, NADH but not by nicotinamide. 6. The substantial phosphorylation of the intracellular NAD(H) pool noticed in stimulated granulocytes is probably due to enhanced NAD kinase activity and modulated by physiological concentrations of NADH.  相似文献   

13.
Total NAD kinase activity remained unaltered in the drought non-adapted wheat leaves under water deficit, but gradually decreased with water deficit in the adapted ones. The share of the calmodulin-dependent enzyme was significantly higher in the drought-hardened than in non-hardened plants; however, under severe water deficit the activity of the enzyme dropped by half. It seems, therefore, that NAD kinase activity does not limit phosphorylation of NAD in dehydrated plant tissues.  相似文献   

14.
NAD kinase activity from dark grown corn coleoptiles is shown to be almost totally dependent on Ca2+ and calmodulin. Nearly all of the enzyme activity is found in a particulate fraction. Upon differential and density gradient centrifugation the NAD kinase activity co-migrates with the mitochondrial cytochrome c oxidase whereas marker activities for nuclei, etioplasts, endoplasmic reticulum, and microbodies could well be separated, indicating that the NAD kinase is associated with mitochondria. This NAD kinase, associated with intact mitochondria, can be activated by exogenously added Ca2+ and calmodulin. In order to investigate the submitochondrial localization of the NAD kinase, the organelles were ruptured by osmotic treatment and sonication and the submitochondrial fractions were separated by density gradient centrifugation. The NAD kinase activity exhibits the same density pattern as the antimycin A-insensitive NADH-dependent cytochrome c reductase, a marker enzyme of the outer mitochondrial membrane. Marker enzymes for the mitochondrial matrix and the inner mitochondrial membrane reveal different density profiles. These results indicate that the Ca2+, calmodulin-dependent NAD kinase from coleoptiles of dark grown corn seedlings is located at the outer mitochondrial membrane. The physiological relevance of the location and the Ca2+, calmodulin-dependence of the NAD kinase will be discussed.  相似文献   

15.
Calmodulin-dependent NAD kinase of human neutrophils   总被引:1,自引:0,他引:1  
NAD kinase from human neutrophils has been partially purified by sequential application of Red Agarose, ion-exchange, and gel-filtration chromatography. The enzyme has a broad pH optimum, 7.0-9.5, is strictly dependent upon the presence of Mg2+, and in the absence of calcium exhibits Km values of 0.6 and 0.9 mM for NAD and ATP, respectively. NAD kinase activity is extremely sensitive to free calcium concentration, with half-maximal activity observed at free calcium concentrations of approximately 0.4 microM. In cellular extracts calcium-dependent activation of NAD kinase increases the maximum velocity of the reaction from 2- to 5-fold while not affecting Km values for NAD and ATP. The activity of the partially purified NAD kinase is stimulated 3.5-fold by the addition of calmodulin in the presence of calcium. This stimulation is inhibited by the addition of 20 microM trifluoperazine to the incubation. These data are interpreted as implicating calmodulin in NAD kinase regulation. The total concentration of NADP + NADPH in the human neutrophil used increased 2.2-fold in response to activation by phorbol myristic acetate. Finally, neutrophil NAD kinase has a Mr, based upon gel filtration, of 169,000.  相似文献   

16.
17.
NAD激酶能催化NAD生成NADP。本研究采用PCR技术从嗜热脂肪地芽孢杆菌基因组中获得NAD激酶基因,以pET30a(+)为表达载体、E.coliBL21(DE3)为宿主菌,实现其在大肠杆菌中异源表达,并进行酶学性质研究。结果显示,嗜热脂肪地芽孢杆菌中NAD激酶编码基因大小为816bp,酶分子量大约为35kD。酶学性质分析表明,来源于嗜热脂肪地芽孢杆菌的NAD激酶最适反应温度和pH分别为35℃、pH7.5,在35qC中保温2h后仍能保持80%左右的活性。Mn2+、Ca2+对该酶有较强的激活作用,在最适反应条件下该酶的比活力为4.43U/mg。动力学性质分析结果显示NAD激酶对底物NAD催化的k和圪。,分别为1.46mmol/L和0.25tzmol/(L·min)。NAD激酶在大肠杆菌的异源表达为以NAD为底物生物合成NADP提供了更多生物资源。  相似文献   

18.
Using three independent methods tte amperometric titration, Boyer's method and the method of Ellman it is shown that rabbit muscle creatine kinase contains 11-12 SH-groups, 3-6 of which are easily oxidized by atmospheric oxygen to form S-S-bonds. It is found that creatine kinase has four types of SH-groups distinguished by their accessibility to different SH-reagents. The first type related to the enzymatic activity is detected by the Ellman method (2 SH-groups), the first and the second ones taken together--by the Boyer method (4 SH-groups), the first, second and third ones--by the method of amperometric titration (6 SH-groups), all the 4 types together--when detecting SH-groups after protein denaturation--by any of the above methods (8-12 SH-groups).  相似文献   

19.
Kinetic characteristics for reactivity of SH-groups of milk xanthine oxidase were obtained under different conditions. Two types of SH-groups with rate constant values, differing by a factor of about 50, were found in a phosphate buffer at pH 7.0. The slow stage of reaction is followed by protein precipitation. The number of fast- (12) and slowly-reacting (60) groups were calculated from the kinetic data. The blocking of the fast-reacting groups occurs without loss of the enzyme activity. The values of activation energy for the fast- and slowly-reacting groups are 15 and 48 kcal/mol respectively. The formation of the enzyme-substrate complex stabilizes the enzyme molecule; the number of fast-reacting SH-groups and the rate constant values for both types of groups remain unchanged, whereas the number of slowly-reacting SH-groups markedly decreases (37). The values of activation energy for both types of SH-groups show no changes in the presence of substrate. Conformations of the enzyme in different denaturating solvents were characterized by a number of SH-groups, reacting with p-chloromercurybenzoate. 54 groups are exposed in solutions of groups exposed in 7.0-8.5 M urea solutions is 35-38. In all solvents studied the protein molecule is probably not completely unfolded, since the number of exposed SH-groups is less than the full number of SH-groups determined by the amino acid analysis. Only 42 SH-groups reacted with 5,5'-dithiobis-(2-nitrobenzoic acid) under the same conditions.  相似文献   

20.
NAD kinase is thought to play an important role in the plant cellular responses to biotic and abiotic stress as one of the isoforms of the enzyme is activated by the Ca2 + –calmodulin (CaM) complex. NAD kinase activity was measured after short‐term NaCl stress applied to isolated cells from Lycopersicon esculentum, var. Volgogradskij (NaCl‐sensitive tomato) and L. pimpinellifolium, acc. PE2 (NaCl‐tolerant species). NAD kinase activity remained constant in the sensitive species, whereas a sharp decrease was observed in the tolerant one. After salt treatment, an induction of the calmodulin gene(s) was observed in the two species, together with a 30–50% decrease in ‘active’ CaM content, i.e. CaM able to activate purified NAD kinase, in L. pimpinellifolium. The decrease in NAD kinase activity could not, however, be fully explained by this decrease in active CaM content. A similar decrease in NAD kinase activity was also recorded with other ionic stresses and exposure to high temperatures, but not in the case of drought, exposure to low temperatures, hormonal (indole‐3‐acetic acid and abscisic acid) or H2O2 treatments. External Ca2 + certainly plays a role in the biochemical mechanism(s) leading to NAD kinase inhibition, while no role could be shown for intracellular Ca2 + . In addition, after salt stress, a modification of the redox state of NAD kinase seems to be responsible for the inhibition of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号