首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two crystalline and one highly purified galactanases were obtained from the culture broth of Bacillus subtilis var. amylosacchariticus (1043) and their chemical and enzymatic properties, especially, their specificities were comparatively studied. Their molecular weights were almost the same, but the isoelectric points were considerably different from each other. The galactanases were sensitive to metal chelators and stabilized by Ca2+. The pH optimum of the enzymes were between 6.0 and 7.0. All the galactanases investigated here attacked soybean arabinogalactan without liberation of arabinose, though they were inactive against coffee bean arabinogalactan. In digestion of soybean arabinogalactan, all the galactanases purified here formed galactose, galactobiose and galactotriose whereas the galactanase previously isolated from Bacillus subtilis K–50 produced galactobiose as the main final product.  相似文献   

2.
Many strains of Bacillus subtilis were found to secrete several hemicellulolytic enzymes such as arabinoxylanase, galactomannanase, arabinogalactanase, etc. Chemical and enzymatic properties of certain strains of the bacterium were comparatively investigated. An arabinogalactanase was purified and obtained in a crystalline state. Its molecular weight and isoelectric point were estimated to be 3.7×104 and 8.39, respectively. The enzyme showed an optimal pH for reactions at 6.0, and was stable in a pH range of 5.0 to 9.5 at 30°C. It required no metallic ions for its activity and hydrolyzed soybean arabinogalactan, forming galactobiose as the main product. No liberation of arabinose was observed in the hydrolysate. Also, the enzyme did not attack coffee bean arabinogalactan. Some implications of the experimental results are discussed.  相似文献   

3.
Two galactanases (I and II) were purified to homogeneous states from water extracts of a wheat bran culture of Penicillium citrinum. Although these enzymes were separable by affinity chromatography and distinct on Polyacrylamide gel electrophoresis, they were similar in physical and enzymatic nature. They had almost the same molecular weight (3.5 } 104) and isoelectric point (pH 4.2), and similar amino acid compositions and carbohydrate contents (3%). Alanine and leucine were detected for both enzymes as the N- and C-terminal amino acids, respectively.

These enzymes were most active at pH 4.5 and 55%C, and were stable between pH 4 and 10 (at 15%C for 24hr), and below 55%C (at pH 5.5 for 10min). The enzymes hydrolyzed soybean arabinogalactan to produce galactose and several galac-tooligosaccharides, but did not attack coffee bean arabinogalactan. Therefore, these enzymes were suggested to be endo-l,4-²-D-galactanases.

The enzymes also attacked ONPG and PNPG, and lag phases were observed at the beginning of the reactions.

Among the compounds examined, Hg2+ and Fe3+ inhibited the enzyme actions. ONPG-hydrolyzing activities of the enzymes were inhibited by some sugars such as lactose, galactose, arabinose, glucose and xylose.

Galactobiose, -triose and -tetraose prepared from soybean arabinogalactan with purified galactanase I were found to be further hydrolyzed by the enzymes. A lag phase was also observed in the time course of hydrolysis of galactobiose.  相似文献   

4.
The beta-1,4-galactanase from Bacillus licheniformis (BLGAL) is a plant cell-wall-degrading enzyme involved in the hydrolysis of beta-1,4-galactan in the hairy regions of pectin. The crystal structure of BLGAL was determined by molecular replacement both alone and in complex with the products galactobiose and galactotriose, catching a first crystallographic glimpse of fragments of beta-1,4-galactan. As expected for an enzyme belonging to GH-53, the BLGAL structure reveals a (betaalpha)(8)-barrel architecture. However, BLGAL betaalpha-loops 2, 7 and 8 are long in contrast to the corresponding loops in structures of fungal galactanases determined previously. The structure of BLGAL additionally shows a calcium ion linking the long betaalpha-loops 7 and 8, which replaces a disulphide bridge in the fungal galactanases. Compared to the substrate-binding subsites predicted for Aspergillus aculeatus galactanase (AAGAL), two additional subsites for substrate binding are found in BLGAL, -3 and -4. A comparison of the pattern of galactan and galactooligosaccharides degradation by AAGAL and BLGAL shows that, although both are most active on substrates with a high degree of polymerization, AAGAL can degrade galactotriose and galactotetraose efficiently, whereas BLGAL prefers longer oligosaccharides and cannot hydrolyze galactotriose to any appreciable extent. This difference in substrate preference can be explained structurally by the presence of the extra subsites -3 and -4 in BLGAL.  相似文献   

5.
The nonnucleophilic mutant E383A beta-glucosidase from Streptomyces sp. has proven to be an efficient glycosynthase enzyme, catalyzing the condensation of alpha-glucosyl and alpha-galactosyl fluoride donors to a variety of acceptors. The enzyme has maximal activity at 45 degrees C, and a pH-dependence reflecting general base catalysis with an apparent kinetic pKa of 7.2. The regioselectivity of the new glycosidic linkage depends unexpectedly on the acceptor substrate. With aryl monosaccharide acceptors, beta-(1-->3) disaccharides are obtained in good to excellent yields, thus expanding the synthetic products available with current exo-glycosynthases. With xylopyranosyl acceptor, regioselectivity is poorer and results in the formation of a mixture of beta-(1-->3) and beta-(1-->4) linkages. In contrast, disaccharide acceptors produce exclusively beta-(1-->4) linkages. Therefore, the presence of a glycosyl unit in subsite +II redirects regioselectivity from beta-(1-->3) to beta-(1-->4). To improve operational performance, the E383A mutant was immobilized on a Ni2+-chelating Sepharose resin. Immobilization did not increase stability to pH and organic solvents, but the operational stability and storage stability were clearly enhanced for recycling and scaling-up.  相似文献   

6.
A gene encoding an alpha-L: -arabinofuranosidase, designated SaAraf43A, was cloned from Streptomyces avermitilis. The deduced amino acid sequence implies a modular structure consisting of an N-terminal glycoside hydrolase family 43 module and a C-terminal family 42 carbohydrate-binding module (CBM42). The recombinant enzyme showed optimal activity at pH 6.0 and 45 degrees C and was stable over the pH range of 5.0-6.5 at 30 degrees C. The enzyme hydrolyzed p-nitrophenol (PNP)-alpha-L: -arabinofuranoside but did not hydrolyze PNP-alpha-L: -arabinopyranoside, PNP-beta-D: -xylopyranoside, or PNP-beta-D: -galactopyranoside. Debranched 1,5-arabinan was hydrolyzed by the enzyme but arabinoxylan, arabinogalactan, gum arabic, and arabinan were not. Among the synthetic regioisomers of arabinofuranobiosides, only methyl 5-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside was hydrolyzed by the enzyme, while methyl 2-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside and methyl 3-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside were not. These data suggested that the enzyme only cleaves alpha-1,5-linked arabinofuranosyl linkages. The analysis of the hydrolysis product of arabinofuranopentaose suggested that the enzyme releases arabinose in exo-acting manner. These results indicate that the enzyme is definitely an exo-1,5-alpha-L: -arabinofuranosidase. The C-terminal CBM42 did not show any affinity for arabinogalactan and debranched arabinan, although it bound arabinan and arabinoxylan, suggesting that the CBM42 bound to branched arabinofuranosyl residues. Removal of the module decreased the activity of the enzyme with regard to debranched arabinan. The CBM42 plays a role in enhancing the debranched arabinan hydrolytic action of the catalytic module in spite of its preference for binding arabinofuranosyl side chains.  相似文献   

7.
A gene encoding an exo-beta-1,3-galactanase from Clostridium thermocellum, Ct1,3Gal43A, was isolated. The sequence has similarity with an exo-beta-1,3-galactanase of Phanerochaete chrysosporium (Pc1,3Gal43A). The gene encodes a modular protein consisting of an N-terminal glycoside hydrolase family 43 (GH43) module, a family 13 carbohydrate-binding module (CBM13), and a C-terminal dockerin domain. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme shows optimal activity at pH 6.0 and 50 degrees C and catalyzes hydrolysis only of beta-1,3-linked galactosyl oligosaccharides and polysaccharides. High-performance liquid chromatography analysis of the hydrolysis products demonstrated that the enzyme produces galactose from beta-1,3-galactan in an exo-acting manner. When the enzyme acted on arabinogalactan proteins (AGPs), the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate a beta-1,6-linked galactosyl side chain. The substrate specificity of the enzyme is very similar to that of Pc1,3Gal43A, suggesting that the enzyme is an exo-beta-1,3-galactanase. Affinity gel electrophoresis of the C-terminal CBM13 did not show any affinity for polysaccharides, including beta-1,3-galactan. However, frontal affinity chromatography for the CBM13 indicated that the CBM13 specifically interacts with oligosaccharides containing a beta-1,3-galactobiose, beta-1,4-galactosyl glucose, or beta-1,4-galactosyl N-acetylglucosaminide moiety at the nonreducing end. Interestingly, CBM13 in the C terminus of Ct1,3Gal43A appeared to interfere with the enzyme activity toward beta-1,3-galactan and alpha-l-arabinofuranosidase-treated AGP.  相似文献   

8.
A gene encoding a beta-1,3-1,4-glucanase (CelA) belonging to family 5 of glycoside hydrolases was cloned and sequenced from the Bacillus subtilis A8-8. The open-reading-frame of celA comprised 1499 base pairs and the enzyme was composed of 500 amino acids with a molecular mass of 55 kDa. The recombinant beta-1,3-1,4 glucanase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 8.0 and 60 degrees C, respectively. The enzyme was stable within pH 6.0-9.0. It was stable up to 60 degrees C and retained 30% of its original activity at 70 degrees C for 60 min. It hydrolyzed lichenan, CMC, xylan, laminarin, avicel and pNPC, but was inactive towards cellobiose. The enzyme activity was markedly activated by Co2+ and Mn2+, but was strongly inactivated by Fe3+. The truncated gene, devoid of cellulose-binding domain (CBD) showed 60% of activity and bound to avicel.  相似文献   

9.
A novel ginsenoside-hydrolyzing beta-glucosidase was purified from Paecilomyces Bainier sp. 229 by a combination of QSepharose FF, phenyl-Sepharose CL-4B, and CHT ceramic hydroxyapatite column chromatographies. The purified enzyme was a monomeric protein with a molecular mass estimated to be 115 kDa. The optimal enzyme activity was observed at pH 3.5 and 60oC. It was highly stable within pH 3-9 and at temperatures lower than 55oC. The enzyme was specific to beta-glucoside. The order of enzyme activities against different types of beta-glucosidic linkages was beta-(1- 6)>beta-(1-2)>beta-(1-4). The enzyme converted ginsenoside Rb1 to CK specifically and efficiently. An 84.3% amount of ginsenoside Rb1, with an initial concentration of 2 mM, was converted into CK in 24 h by the enzyme at 45 degrees and pH 3.5. The hydrolysis pathway of ginsenoside Rb1 by the enzyme was Rb1-->Rd-->F2-->CK. Five tryptic peptide fragments of the enzyme were identified by a newly developed de novo sequencing method of post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. By comparing the five identified peptide sequences with the NCBI database, this purified beta-glucosidase proves to be a new protein that has not been reported before.  相似文献   

10.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

11.
Acylated beta-cyclodextrins (beta-CDs) were studied to gain perspective on maltose octapropanoate, the crystal structure of which was reported in the preceding paper in this issue. Acylated beta-CDs are distorted so we looked at other CDs and gained increased understanding of distortion in CDs and possibly, shapes in starch. Classic CDs have six to eight glucose residues in a doughnut shape that is stabilized by a ring of inter-residue O3,,,O2' hydrogen bonds. On a phi,psi energy map for a maltose analog that does not form hydrogen bonds, classic CD linkages have higher energies than structures that are stabilized by the exo-anomeric effect. In distorted beta-CDs, which lack hydrogen bonding, some linkages attain low-energies from the exo-anomeric effect and acyl stacking. Those linkages result in left-handed helical geometry so other linkages are forced by the CD macrocycle to have counter-balancing right-handed character. Permethylated gamma-CDs have two 'flipping' linkages as do some larger native CDs. Flipping linkages allow two left-handed segments to join into a macrocycle, thus avoiding the higher-energy, right-handed forms. Some glucose rings in derivatized beta-CDs have substantial positive twists of the pseudo torsion angle O1-C1...C4-O4, adding right-handed character to balance the left-handed linkages. In substituted gamma-CD, all residues have negative twists, giving extra left-handed character to the short, pseudo-helical segments. In non-macrocyclic molecules the twists ranged from -14 degrees to +2 degrees , averaging -6.1 degrees. In these beta- and gamma-CDs, the twists ranged from -22 degrees to +16 degrees for (4)C(1) rings, and the (O)S(2) ring in acetylated beta-CD has a twist of +34 degrees . Glucose residues in other CDs were less twisted.  相似文献   

12.
An endo-beta-(1-->6)-galactanase from Onozuka R-10, a commercial cellulase preparation from Trichoderma viride, was purified 57-fold. Apparent Mr values of the purified enzyme, estimated by denaturing gel electrophoresis and gel filtration, were 47,000 and 17,000, respectively. The enzyme was assayed with a galactan from Prototheca zopfii, which has a high proportion of beta-(1-->6)-linked galactosyl residues. It exhibited maximal activity toward the galactan at pH 4.3. The enzyme hydrolyzed specifically beta-(1-->6)-galactooligosaccharides with a degree of polymerization higher than 3 and their acidic derivatives with 4-O-methyl-glucosyluronic or glucosyluronic groups at the nonreducing terminals. The methyl beta-glycoside of beta-(1-->6)-galactohexaose was degraded to reducing galactooligomers with a degree of polymerization 2-5 as the products at the initial stage of hydrolysis, and galactose and galactobiose at the final stage, indicating that the enzyme can be classified as an endo-galactanase. The extent of hydrolysis of the carbohydrate portion of a radish root arabinogalactan-protein (AGP) increased when alpha-L-arabinofuranosyl residues attached to beta-(1-->6)-linked galactosyl side chains of the AGP were removed in advance. The enzyme released galactose, beta-(1-->6)-galactobiose, and 4-O-methyl-beta-glucuronosyl-(1-->6)-galactose as major hydrolysis products when allowed to act exhaustively on the modified AGP.  相似文献   

13.
Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a beta-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60 degrees C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50 degrees C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only beta-2,6-linkage of levan, but also beta-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-beta-D-fructan 6-levanbiohydrolase (EC 3.2.1.64).  相似文献   

14.
The putative endo-beta-1,6-galactanase gene from Streptomyces avermitilis was cloned and expressed in Escherichia coli, and the enzymatic properties of the recombinant enzyme were characterized. The gene consisted of a 1,476-bp open reading frame and encoded a 491-amino-acid protein, comprising an N-terminal secretion signal sequence and glycoside hydrolase family 5 catalytic module. The recombinant enzyme, Sa1,6Gal5A, catalyzed the hydrolysis of beta-1,6-linked galactosyl linkages of oligosaccharides and polysaccharides. The enzyme produced galactose and a range of beta-1,6-linked galacto-oligosaccharides, predominantly beta-1,6-galactobiose, from beta-1,6-galactan chains. There was a synergistic effect between the enzyme and Sa1,3Gal43A in degrading tomato arabinogalactan proteins. These results suggest that Sa1,6Gal5A is the first identified endo-beta-1,6-galactanase from a prokaryote.  相似文献   

15.
Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.  相似文献   

16.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

17.
A putative endo-beta-1,4-D-galactanase gene of Thermotoga maritima was cloned and overexpressed in Escherichia coli. The recombinant enzyme hydrolyzed pectic galactans and produced D-galactose, beta-1,4-D-galactobiose, beta-1,4-D-galactotriose, and beta-1,4-D-galactotetraose. The enzyme displayed optimum activity at 90 degrees C and pH 7.0. It was slowly inactivated above pH 8.0 and below pH 5.0 and stable at temperatures up to 80 degrees C.  相似文献   

18.
A laminarinase [endo-(1,3)-beta-d-glucanase] has been purified from Trichoderma longibrachiatum cultivated with d-glucose as the growth substrate. The enzyme was found to hydrolyze laminarin to oligosaccharides varying in size from glucose to pentaose and to lesser amounts of larger oligosaccharides. The enzyme was unable to cleave laminaribiose but hydrolyzed triose to laminaribiose and glucose. The enzyme cleaved laminaritetraose, yielding laminaritriose, laminaribiose, and glucose, and similarly cleaved laminaripentaose, yielding laminaritetraose, laminaritriose, laminaribiose, and glucose. The enzyme cleaved only glucans containing beta-1,3 linkages. The pH and temperature optima were 4.8 and 55 degrees C, respectively. Stability in the absence of a substrate was observed at temperatures up to 50 degrees C and at pH values between 4.9 and 9.3. The molecular mass was determined to be 70 kilodaltons by sodium dodecyl sulfate-12.5% polyacrylamide gel electrophoresis, and the pI was 7.2. Enzyme activity was significantly inhibited in the presence of HgCl(2), MnCl(2), KMnO(4), and N-bromosuccinimide. The K(m) of the enzyme on laminarin was 0.0016%, and the V(max) on laminarin was 3,170 mumol of glucose equivalents per mg of the pure enzyme per min.  相似文献   

19.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

20.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号