首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol and the cell membrane   总被引:40,自引:0,他引:40  
Recent studies concerning cholesterol, its behavior and its roles in cell growth provide important new clues to the role of this fascinating molecule in normal and pathological states.  相似文献   

2.
The presence of low levels of calpastatin activity in erythrocytes of hypertensive rats affects regulation of calpain activity so it is highly susceptible to activation within physiological fluctuations in [Ca2+]. Under identical conditions, in red cells of normotensive rats, calpain activation is efficiently controlled by the high levels of calpastatin activity, and a progressive increase in proteinase activity can only be observed in parallel with a decrease in the level of calpastatin. In intact erythrocytes from hypertensive rats exposed to small variations in [Ca2+], degradation of anion transport protein (band 3) and Ca(2+)-ATPase appears as a primary event indicating that these two transmembrane proteins are probably early recognized as targets of intracellular calpain activity. Furthermore, band 3 protein seems to be structurally modified in erythrocytes from hypertensive rats, as indicated by its increased susceptibility to degradation in the presence of 10-50 microM Ca2+. In addition, when exposed to progressive and limited increases in [Ca2+], erythrocytes from hypertensive rats, but not those from normotensive rats, show a high degree of fragility that can be restored to normal values by inhibition of calpain. These results indicate that, within fluctuations in [Ca2+] close to physiological values, regulation of calpain activity is efficiently accomplished in normal erythrocytes but is completely lost in cells from hypertensive animals. Regulation is of critical importance in maintaining normal structural and functional properties of selective red cell membrane and cytoskeletal proteins, among which band 3 and Ca(2+)-ATPase appear to be the substrates with highest susceptibility to digestion by calpain.  相似文献   

3.
The red cell membrane has long been the focus of extensive study. The macromolecules embedded within the membrane carry the blood group antigens and perform many functions including the vital task of gas exchange. Links between the intramembrane macromolecules and the underlying cytoskeleton stabilize the biconcave morphology of the red cell and allow deformation during microvascular transit. Much is now known about the proteins of the red cell membrane and how they are organised. In many cases we have an understanding of which proteins are expressed, the number of each protein per cell, their oligomeric state(s), and how they are collected in large multi-protein complexes. However, our typical view of these structures is as cartoon shapes in schematic figures. In this study we have combined knowledge of the red cell membrane with a wealth of protein structure data from crystallography, NMR, and homology modelling to generate the first, tentative models of the complexes which link the membrane to the cytoskeleton. Measurement of the size of these complexes and comparison with known cytoskeletal distance parameters suggests the idea of interaction between the membrane complexes, which may have profound implications for understanding red cell function and deformation.  相似文献   

4.
5.
The results presented here indicate that haemoglobin is an integral part of the red cell membrane. The haemoglobin content of the membrane is highly dependent on the Ca++ content of the membrane in health and disease. Changes in the red cell interior alter the whole organization of the membrane and are even reflected in the binding of immunoglobulins to the red cell surface. The preferential binding of Hb-s A2 and S to the membrane has been confirmed. This phenomenon cannot be explained by differences in the charge between these haemoglobins and Hb A.  相似文献   

6.
Localization of red cell membrane constituents   总被引:29,自引:0,他引:29  
  相似文献   

7.
Summary Like most other red cells, the giant erythrocytes ofAmphiuma means possess a system for rapid exchange of chloride across the membrane. Also, there are indications that the net transport of chloride in these cells is slow. The size ofAmphiuma erythrocytes allows direct measurements of membrane potential with microelectrodes. The present work exploits the possibility that such measurements can be used to give a quantitative estimate of the chloride conductance (G Cl) of the Amphiuma red cell membrane. The membrane potential was measured as a function of extracellular chloride concentration (5–120mM), using an impermeant anion (Para-amino-hippurate) as a substitute. Furthermore, the effect of different pH values (6.0–7.2) was studied. For each extracellular chloride concentration the membrane potential was determined at a pH at which hydroxyl, hydrogen, and bicarbonate ions were in electrochemical equilibrium. From these membrane potentials and the corresponding chloride concentrations in the medium (at constant intracellular ion concentrations), theG Cl of the membrane was calculated to be 3.9×10–7 {ie27-1} cm–2. This value is some six orders of magnitude smaller than that calculated from the rate of tracer exchange under equilibrium conditions. The experimental strategy used gives the value for a partial transference number which takes into account only ions which arenot in electrochemical equilibrium. Whereas this approach gives a value forG Cl, it does not permit calculation of the overall membrane conductance. From the calculated value ofG Cl it is possible to estimate that the maximal value of the combined conductances of hydroxyl (or proton) and bicarbonate ions is 0.6×10–7 {ie27-2} cm–2. The large discrepancy between the rate of exchange of chloride and its conductance is in agreement with measurements on human and sheep red cells employing the ionophore valinomycin to increase the potassium conductance of the membrane. The results in the present study were, however, obtained without valinomycin and an accompanying assumption of a constant field in the membrane. Therefore, the present measurements give independent support to the above mentioned conclusions.  相似文献   

8.
Summary Procedures were developed for preparation of red cell membranes almost free of hemoglobin but with minimal loss of membrane proteins. Two water-soluble protein fractions are described, each constituting about 25% of the ghost protein. The first is ionically bonded and can be solubilized in water rapidly at pH 7.0 and more slowly at higher ionic strength solutions, with a minimal rate at 20mm. This fraction contains four major components with molecular weights ranging from 30,000 to 48,000. The second fraction can only be solubilized at an appreciable rate if Ca++ is absent and at higher pH (9.0). It is predominantly a single molecular weight component (150,000). It tends to aggregate at higher ionic strength and in the presence of Ca++. Evidence is presented suggesting that the water-soluble proteins are present at the inner face of the membrane. The lipids remain in a water-insoluble residue that contains four major protein components ranging in molecular weight from 30,000 to 100,000. The latter is the predominant component. Only the residue contains the Na+–K+-activated ATPase, the cholinesterase, antigenic activity and most of the sialic acid and carbohydrate. The first water-soluble fraction contains a Mg++-activated ATPase. The extraction of the water-soluble proteins is accompanied by anatomical changes resulting finally in the formation of small membranous vesicles.  相似文献   

9.
10.
Hereditary disorders of the red cell membrane skeleton   总被引:8,自引:0,他引:8  
The hereditary hemolytic anemias include a heterogeneous class of disorders caused by defects in the proteins that constitute the membrane skeleton of the red blood cell. The combination of classical and molecular genetics together with clinical findings is rapidly improving our understanding of the basis of these defects.  相似文献   

11.
We have used an ultrasensitive force probe and optical interferometry to examine the thickness compressibility of the red cell membrane in situ. Pushed into the centers of washed-white red cell ghosts lying on a coverglass, the height of the microsphere-probe tip relative to its closest approach on the adjacent glass surface revealed the apparent material thickness, which began at approximately 90 nm per membrane upon detection of contact (force approximately 1-2 pN). With further impingement, the apparent thickness per membrane diminished over a soft compliant regime that spanned approximately 40 nm and stiffened on approach to approximately 50 nm under forces of approximately 100 pN. The same force-thickness response was obtained on recompression after retraction of the probe, which demonstrated elastic recoverability. Scaled by circumferences of the microspheres, the forces yielded energies of compression per area which exhibited an inverse distance dependence resembling that expected for flexible polymers. Attributed to the spectrin component of the membrane cytoskeleton, the energy density only reached one thermal energy unit (k(B)T) per spectrin tetramer near maximum compression. Hence, we hypothesized that the soft compliant regime probed in the experiments represented the compressibility of the outer region of spectrin loops and that the stiff regime < 50 nm was the response of a compact mesh of spectrin backed by a hardcore structure. To evaluate this hypothesis, we used a random flight theory for the entropic elasticity of polymer loops to model the spectrin network. We also examined the possibility that additional steric repulsion and apparent thickening could arise from membrane thermal-bending excitations. Fixing the energy scale to k(B)T/spectrin tetramer, the combined elastic response of a network of ideal polymer loops plus the membrane steric interaction correlated well with the measured dependence of energy density on distance for a statistical segment length of approximately 5 nm for spectrin (i.e., free chain end-to-end length of approximately 29 nm) and a hardcore limit of approximately 30 nm for underlying structure.  相似文献   

12.
The red cell membrane has an asymmetric arrangement of phospholipids. The amino-phospholipids are localized primarily on the inner surface of the membrane and the choline phospholipids are localized to a large extent on the outer surface of the membrane. Evidence is presented based on the use of covalent chemical probes in sequence that the red cell membrane contains heterogeneous domains of PE and PS and that the transport systems for Pi and K+ are asymmetrically arranged. Certain amino groups of PE, PS, and/or protein localized on the outer membrane surface are involved in Pi transport and certain amino groups of PE, PS, and/or protein localized on the inner surface of the membrane are involved in K+ transport. Cross-linking studies with DFDNB show that the cross-linked PE-PE molecules are rich in plasmalogens. This suggests that clusters of plasmalogen forms of PE occur in the membrane. Both PE and PS are cross-linked to membrane protein. These PE and PS molecules contain 24–28% 16:0 and 18:0 fatty acids and 12% fatty aldehydes. PE and PS molecules are cross-linked to a spectrin-rich fraction. It is proposed that the binding of spectrin to membrane PE and PS may help anchor spectrin to the inner surface of the membrane and regulate shape changes in the cell. K+-valinomycin forms a complex with TNBS and converts it from a non-penetrating proble to a penetrating probe. Valinomycin enhances K+ leak and Pi leak in the red cells. SITS inhibits completely the valinomycin-induced Pi leak and inhibits partially the valinomycin induced K+ leak. Valinomycin and IAA have additive effects on Pi leak. Ouabin has no effect on basal or valino-mycin-induced Pi leak. These data suggest that Pi leak and K+ leak occur by separate transport systems. In summary, the amino-phospholipids in the red cell membrane are asymmetrically arranged; some occur in clusters and some are closely associated with membrane proteins. Amino-phospholipids also are believed to bind spectrin to the inner surface of the membrane and also may play a role in cation and anion leak.  相似文献   

13.
Interactions between human red band 2.1 with spectrin and depleted inside-out vesicles were studied by fluorescence resonance energy transfer and batch microcalorimetry. The band 2.1-spectrin binding isotherm is consistent with a one to one mole ratio. The association constant of 1.4 X 10(8) M-1 corresponds to the association free energy of -11.1 kcal/mol. Under our experimental conditions, the enthalpy of interaction of band 2.1-spectrin was found to be -10.8 kcal/mol and is independent of the protein mole ratio. The calculated entropic factor (-T delta S = 0.3 kcal/mol) strongly suggests a predominantly enthalpic character of the reaction. In addition, we investigated the role of band 2.1 on the binding of band 4.1 to spectrin [Podgorski, A., & Elbaum, D. (1985) Biochemistry 24, 7871-7876] and concluded that only small, if any, alterations of binding of band 4.1 to spectrin have taken place in the presence or absence of band 2.1. This suggests thermodynamic independence of the binding sites. Although the attachment of the cytoskeletal network to the membrane takes place through, at least, two different interactions, band 2.1-band 3 and 4.1-glycophorin, the relative enthalpy values suggest that band 2.1 contributes significantly more than band 4.1 to the energy of the interaction. In addition, we observed that polymerization of actin is modulated by the cytoskeletons as judged by their effect on the rate of actin polymerization.  相似文献   

14.
15.
Thermoelasticity of red blood cell membrane.   总被引:10,自引:0,他引:10       下载免费PDF全文
The elastic properties of the human red blood cell membrane have been measured as functions of temperature. The area compressibility modulus and the elastic shear modulus, which together characterize the surface elastic behavior of the membrane, have been measured over the temperature range of 2-50 degrees C with micropipette aspiration of flaccid and osmotically swollen red cells. In addition, the fractional increase in membrane surface area from 2-50 degrees C has been measured to give a value for the thermal area expansivity. The value of the elastic shear modulus at 25 degrees C was measured to be 6.6 X 10(-3) dyne/cm. The change in the elastic shear modulus with temperature was -6 X 10(-5) dyne/cm degrees C. Fractional forces were shown to be only on the order of 10-15%. The area compressibility modulus at 25 degrees C was measured to be 450 dyne/cm. The change in the area compressibility modulus with temperature was -6 dyne/cm degrees C. The thermal area expansivity for red cell membrane was measured to be 1.2 X 10(-3)/degrees C. With this data and thermoelastic relations the heat of expansion is determined to be 110-200 ergs/cm2; the heat of extension is 2 X 10(-2) ergs/cm2 for unit extension of the red cell membrane. The heat of expansion is of the order anticipated for a lipid bilayer idealized as twice the behavior of a monolayer at an oil-water interface. The observation that the heat of extension is positive demonstrates that the entropy of the material increases with extension, and that the dominant mechanism of elastic energy storage is energetic. Assuming that the red cell membrane shear rigidity is associated with "spectrin," unit extension of the membrane increases the configurational entropy of spectrin by 500 cal/mol.  相似文献   

16.
17.
S Rottem  G M Slutzky  R Bittman 《Biochemistry》1978,17(14):2723-2726
The time course and extent of transfer of [14C]-cholesterol from resting Mycoplasma gallisepticum cells or membrane preparations to high-density lipoproteins were studied. More than 90% of the total cholesterol in isolated, unsealed membrane preparations was exchanged in a single kinetic process. In intact cells, however, cholesterol exists in two different environments. Cholesterol in one environment, representing approximately 50% of the total unesterified cholesterol, is readily exchanged with the cholesterol of high-density lipoproteins, with a half-time of about 4 h at 37 degrees C. The rate of exchange of [14C]cholesterol from the other environment was exceedingly slow, with a half-time of about 18 days. The fraction of the total cholesterol in the readily exchangeable cholesterol pool in intact cells increased somewhat upon aging of the culture. Electron spin resonance spectra of nitroxide-labeled stearic acids incorporated into membranes of M. gallisepticum cells indicated increased rigidity at the late exponential phase of growth. These results suggest that cholesterol is present in approximately equal concentrations on both surfaces of the M. gallisepticum membrane and that in resting cells the rate of movement of cholesterol molecules from the inner to outer halves of the lipid bilayer is exceedingly slow or nonexistent.  相似文献   

18.
The interaction of deoxyhemoglobin with the red cell membrane is characterized by comparing the affinity of deoxyhemoglobin for the membrane with that of oxyhemoglobin. The two techniques used, namely light scattering induced changes and quenching of the fluorescence intensity of a membrane embedded probe, demonstrate that deoxyhemoglobin exhibits a much lower affinity for the membrane than that of oxyhemoglobin. The binding constant of 2×10 M?1 calculated for deoxyhemoglobin at 5 mM phosphate buffer and pH=6.0 is two orders of magnitude lower than the one calculated for oxyhemoglobin. It is estimated that under physiological conditions the only species capable of interacting with the membrane is the oxyhemoglobin.  相似文献   

19.
Electro-insertion of xeno-glycophorin into the red blood cell membrane   总被引:3,自引:0,他引:3  
The electroporation technique, with field strengths slightly below the critical value Ec for electroporation of red blood cells (RBC), enables the insertion of xeno-proteins into the RBC membrane without damaging the cells. The electro-insertion has been used to insert biotinylated human glycophorin into human RBC membrane and human glycophorin into murine RBC membrane. Binding anti-human glycophorin antibody (10F7) to the murine RBC bearing human glycophorin indicates extracellular orientation of inserted glycophorin. Insertion of about 10(5) glycophorin molecule per cell has been estimated by whole cell ELISA.  相似文献   

20.
Summary Direct mechanical experiments and analyses support the view that the red cell membrane is a composite with a solid structural matrix, which can behave as either a viscoelastic or viscoplastic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号