首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We evaluated restoration success on macrophyte species diversity and composition in lowland streams using communities in 30 naturally meandering stream reaches in the western part of Jutland, Denmark, as reference target communities. Fuzzy set clustering was used to examine the floristic and environmental similarity among reaches, whereas fuzzy set ordination was used to relate floristic patterns to environmental variables. 2. Two major groups of streams were identified based on their floristic composition. One group consisted of reference and restored reaches and the other of the majority of channelised reaches. We found that management exerted a strong influence on the macrophyte communities and that the identified groups were related to differences in management intensity. 3. Our results also indicate that bank morphology and bed level affected macrophyte communities in the streams, particularly the richness and abundance of terrestrial species. The analyses performed suggest that shallow and wide banks allow for a larger migration of species from the stream banks into the streams, thereby enhancing species diversity within the stream channel. 4. The results of this study suggest that macrophyte communities in channelised lowland streams can recover following restorative interventions given that stream management (i.e. weed cutting and dredging) is minimised and that stream banks are reprofiled to improve the lateral connectivity between the stream and its valley.  相似文献   

2.
Understanding nutrient uptake and retention in streams remains an important challenge for lotic scientists. In this study a series of pulse and continuous releases of dissolved nutrients were made to shaded and unshaded (reference) reaches of a small lowland stream to determine whether suppression of macrophyte growth by riparian shade impaired nutrient retention. The nutrients were dissolved reactive phosphorus (DRP), total ammoniacal nitrogen (NH4–N) and nitrate nitrogen (NO3–N). Nutrient reductions ranged from 100% of DRP when stream water was anoxic, to 5–10% for NH4–N and NO3–N in the reference reach. Nutrient removals were affected by travel times in each reach. Percentage removals of NH4–N (46 ± 10) and NO3–N (52 ± 14) were higher in the shaded reach than in the swifter moving reference reach (15 ± 8 and 16 ± 10, respectively). DRP (%) removals were 75± 7 and 57 ± 12 for the shaded and reference reaches, respectively. The presence of emergent marginal macrophytes (Persicaria hydropiper) increased stream velocity in the reference reach by reducing the effective channel cross-section area. Shading reduced plant biomass, increased the channel cross-section and lowered velocity in the experimental reach, effecting dramatic reductions in nutrient concentrations over short distances. The opposite effect is more typical for larger, swifter streams having dense stands of submerged macrophytes, where lowering channel plant biomass will cause increased velocities and lower relative nutrient losses. Riparian shade does not necessarily impair nutrient uptake from small streams. Where invasive marginal species such as P. hydropiper dominate headwater streams shade may be beneficial to the protection of downstream waters from eutrophication. Where reduction of nutrient fluxes from small streams is a key objective for protection of downstream waters, active management of streams should seek to increase travel times, allowing greater potential for nutrient uptake. This will need to be weighed against the need for effective drainage in pastoral areas where reduced travel times are usually sought.  相似文献   

3.
1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south‐eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north‐central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow‐flowing ‘chains of ponds’ with a clay streambed. To correct for potential upstream‐downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay‐bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand‐slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up‐ and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip‐Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ‘expected’ results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus‐rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand‐affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand‐slugged streams. 5. Differences between streams within categories (particularly between sand‐slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand‐affected streams even over relatively small (approximately <10 km) spatial scales.  相似文献   

4.
Ecological management of aquatic plants: effects in lowland streams   总被引:1,自引:0,他引:1  
Recently, a significant increase in macrophyte growth has been observed in many lowland rivers in Flanders, mainly due to eutrophication and an improvement of the water quality. This growth strongly influences the channel roughness (Manning-n). The first purpose of the project was a better understanding of the complex relationship between biomass development and discharge capacity in lowland rivers. In order to avoid the backing up of water upstream, the whole vegetation body is usually mowed annually. This project also investigated a lighter ecological management of aquatic plants in which only a part of the vegetation is removed in separate and alternating blocks, seeking a compromise between sufficient discharge and conserving large parts of the macrophyte vegetation with all its functions. Beside laboratory experiments, field survey was undertaken in the Grote Caliebeek, a tributary of the Kleine Nete in Flanders, Belgium. The results indicated that the presence of macrophytes in lowland rivers slowed down the waterflow and resulted in a raised water level. The upstream water level followed biomass development at a certain discharge level. The mowing experiments and the field survey indicated that alternating weed cutting patterns can reduce fall in an effective way. This research emphasizes the possibilities of alternating weed cutting patterns in order to deal with water flow problems. In the long term there will be the need for a better understanding of the ecological relationships in the search for a sustainable integrated method of controlling aquatic vegetation.  相似文献   

5.
The composition (% relative abundance) of diatom assemblages from soft bottom sediments was studied at 75 sites situated in 46 rivers, brooks, and ditches in the islands of Hiiumaa and Saaremaa and in the lowland of West Estonia. Although the total number of recorded taxa was 205, the studied diatom assemblages consisted of 54, 55, 48, and 50 constant species in the drainage basin of Moonsund, the Gulf of Riga, Hiiumaa, and Saaremaa, respectively. The habitats of the dominating taxa were heterogenous and the most widespread species were Achnanthidium minutissimum, Martyana martyi, Meridion circulare, Cocconeis placentula, Planothidium lanceolatum, and Amphora pediculus. The Shannon–Weaver diversity (H) index varied from 2.09 to 4.63. Multivariate analyses were used to identify the environmental variables governing the composition and structure of the benthic diatom assemblage. Principal Component Analysis (PCA) and Redundancy Analysis (RDA), based on 56 most abundant taxa, indicated differences in the composition and structure of diatom assemblages between different drainage basins as well as between the upper and lower stream courses. In the headwaters there prevailed small epipsammic diatoms (Martyana, Planothidium, Staurosira, Staurosirella). Different motile epipelic species from the genera Amphora, Navicula, Nitzschia, etc. were distributed abundantly in the lower courses of the streams. There was a positive correlation between order of the stream site and trophic level of water (R=0.35; p<0.05). Along a river system, the increasing order of the stream was accompanied by higher trophic level of water.  相似文献   

6.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

7.
The effects of bankside management on chalk stream invertebrate communities   总被引:3,自引:0,他引:3  
SUMMARY 1. Communities of aquatic macroinvertebrates and the terrestrial adult phases of aquatic insects were investigated from short stretches of English chalk streams with two different bankside vegetation types: simply structured grazed grass (grazed) and structurally complex herbaceous vegetation with scattered trees (ungrazed). Macroinvertebrates were sampled in spring, summer, autumn and winter 1996–97 from three aquatic habitats: mid-channel gravel, patches of the aquatic macrophyte Ranunculus and marginal emergent macrophytes. The terrestrial adult phases of aquatic insects were sampled in spring, summer and autumn from bankside vegetation.
2. Total macroinvertebrate abundance did not differ between stretches with different bankside vegetation. Taxon richness of mid-channel gravel was, however, significantly higher in ungrazed compared with grazed stretches and Shannon diversity ( H ') of mid-channel gravel and marginal vegetation was significantly higher in ungrazed compared with grazed stretches. Total abundance, taxon richness and Shannon diversity ( H ') of the terrestrial adult phases of aquatic insect were significantly higher from the bankside vegetation of ungrazed compared with grazed stretches.
3. Ordination of communities of aquatic macroinvertebrates and terrestrial adults demonstrated that individual families of both groups were generally more abundant in ungrazed stretches. Many more families were significantly associated with ungrazed stretches than with grazed stretches.
4. This investigation has shown that high structural diversity of bankside vegetation along lowland chalk streams is accompanied at the reach scale by increased diversity of both aquatic macroinvertebrates and the terrestrial adult phases of aquatic insects. The conservation potential of such streams may thus be lowered by management practices that result in the removal or simplification of bankside vegetation along extensive stream stretches.  相似文献   

8.
1. Fish community characteristics, resource availability and resource use were assessed in three headwater urban streams in Piedmont North Carolina, U.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site downstream of urbanisation, which was impacted by effluent from a wastewater treatment plant (WWTP). Stream basal resources, aquatic macroinvertebrates, terrestrial macroinvertebrates and fish were collected at each site. 2. The WWTPs affected isotope signatures in the biota. Basal resource, aquatic macroinvertebrate and fish δ15N showed significant enrichments in the downstream sites, although δ13C signatures were not greatly influenced by the WWTP. Fish were clearly deriving a significant part of their nutrition from sewage effluent‐derived sources. There was a trend towards lower richness and abundance of fish at sewage‐influenced sites compared with urban restored sites, although the difference was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater abundance compared with unrestored sites. Although significant differences did not exist between urban restored and unrestored areas for aquatic and terrestrial macroinvertebrate abundances and biotic indices of stream health, there appeared to be a trend towards improvements in restored sites for these parameters. Additional surveys of these sites on a regular basis, along with maintenance of restored features are vital to understanding and maximising restoration effectiveness. 4. A pattern of enriched δ13C in fish in restored and unrestored streams in conjunction with enriched δ13C of terrestrial invertebrates at these sites suggests that these terrestrial subsidies are important to the fish, a conclusion also supported by isotope cross plots. Furthermore, enriched δ13C observed for terrestrial invertebrates is consistent with some utilisation of the invasive C4 plants that occur in the urban riparian areas.  相似文献   

9.
Verdonschot  Piet F.M. 《Hydrobiologia》2001,463(1-3):249-262
In most soft-bottomed, lowland streams in the Netherlands discharge regimes largely follow the precipitation pattern. Winter discharges are higher and much more dynamic then summer discharges, although rain storms throughout the year cause unexpected peak flows. Minimal precipitation, reduced stream flow and droughts can occur during the summer months. Lowland stream habitat, particularly in The Netherlands, is hydrologically dynamic, with substrates frequently moved or disturbed. Differences in discharge patterns in Dutch soft-bottomed lowland streams are expected to affect distribution patterns of macroinvertebrates and thus oligochaetes. Ten small to medium sized lowland streams, differing from one another in hydrological regime, were studied. Five major habitats in each stream were assessed on three occasions over a 15-month period. Each habitat sampled with a micro-macrofauna shovel; during each sampling period, several environmental parameters, especially hydrological and substrate parameters, were measured. Ordination (CANOCO) (Ter Braak, 1989) and statistical tests (chi-squared test) (Lindgren & McElrath, 1970) were used to determine the major oligochaete distribution patterns between streams as well as between habitats within each stream. Each stream was characterized by its oligochaete assemblage; general distribution patterns and individual oligochaete–substratum relationships were documented. Hydro-morphological parameters together explained the differences in major distribution patterns. Preferences of oligochaetes for specific structural habitats are discussed.  相似文献   

10.
1. Patterns in species assemblages are the result of the combined influence of processes acting on different spatial scales. Various studies describe the distribution of macroinvertebrate communities and their relationship with environmental factors at different geographical scales, but only a few of these studies concentrate on Western European lowlands. 2. Using Flanders as representative for the densely populated Western‐European lowlands, the specific aims of this study are: (i) to identify the different trichopteran species assemblages and to characterise them biologically using indicator species; (ii) to determine which environmental gradients most influence the observed species assemblages; and (iii) to analyse the relative importance of different spatial scale variables in constraining the Trichoptera distributions. 3. Assessment of the main environmental gradients suggested that the absence of Trichoptera from certain locations was mainly due to elevated nutrient concentrations and lower oxygen contents, confirming their sensitivity to anthropogenic disturbance. 4. Five Trichoptera species assemblages were distinguished based on Bray–Curtis dissimilarity coefficients. These assemblages did not differ significantly in species richness, but a shift in stream zonation preference was observed. In the ordination analysis 11 variables that were selected using a stepwise model building function manifested themselves as upstream–downstream and size‐related gradients. The Trichoptera assemblages in lowland streams thus appear to follow a longitudinal succession pattern that corresponds with the species‐specific preferences. 5. Partitioning the variance over the different spatial scales indicated that the reach‐scale variables were far more important in explaining the variation in species composition. The study design, which limited the minimum–maximum range of catchment‐scale characteristics, however, may have led to an overestimation of the impact of the local‐scale variables.  相似文献   

11.
12.
Abundant growths of macrophytes are a common feature of streams in open lowland areas of New Zealand during summer, but the values of these to aquatic biota are poorly understood. We studied the temporal dynamics of, and associations amongst, elements of a macrophyte-invertebrate system to provide an improved information base for lowland stream management. The biomass of macrophytes increased significantly over the four quarterly sampling occasions from 43.8 g m-2 in June to 370.8 g m-2 in March; biomass was dominated by Egeria densa on all dates, except in December when Potamogeton crispus was dominant. We did not detect strong associations between epiphyton biomass and invertebrate abundance in our study, but this may reflect the fact that we sampled loosely-adhering epiphyton on young, surface-reaching shoots whereas invertebrates were collected from macrophytes growing through the water column. Density of some invertebrate species per gram dry weight of plant material varied by macrophyte type, with the chironomids Tanytarsus vespertinus and Naonella forsythi displaying positive correlations with Egeria and Potamogeton biomass, respectively. The shrimp Paratya curvirostris accounted for 50% of phytophilous invertebrate biomass, with Chironomidae the only other group to comprise more than 9%. Abundance of total phytophilous invertebrates displayed a positive linear relationship with macrophyte biomass in a sample (0.1 m2), and a humped relationship with species richness, such that highest numbers of taxa occurred at macrophyte biomass levels around 400 g dw m-2. Our study suggests that intermediate macrophyte biomass levels are likely to enhance macroinvertebrate biodiversity in sandy-bottomed lowland streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
According to the European Water Framework Directive, member states are obliged to ensure that all surface water bodies achieve at least good ecological status and to identify major anthropogenic stressors. Non-point source contamination of agricultural pesticides is widely acknowledged as one of the most important anthropogenic stressors in stream ecosystems.We surveyed the occurrence of 31 pesticides and evaluated their potential toxicity for benthic macroinvertebrates using Toxic Units (TU) in 14 Danish 1st-and 2nd-order streams in bed sediments and stream water during storm flow and base flow. Total pesticide concentrations and toxic potential were highest during storm flow events with maximum TU ranging from −6.63 to −1.72. We found that minimum buffer strip width in the near upstream area was the most important parameter governing TU. Furthermore, adding a function for minimum buffer strip width to the Runoff Potential (RP) model increased its power to predict measured TUs from 46% to 64%. However, including a function for tile drainage capacity is probably equally important and should be considered in future research in order to further optimise the RP model. Our results clearly emphasise the importance of considering buffer strips as risk mitigation tools in terms of non-point source pesticide contamination. We furthermore apply our results for discussing the minimum dimensions that vegetated buffer strips should have in order to sufficiently protect stream ecosystems from pesticide contamination and maintain good ecological status.  相似文献   

14.
Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods). Data extending over multiple decades are typically scarce. Here, we investigated macroinvertebrate community structural change (including alpha and beta diversity and gain and loss of species) over 22 years (1994–2016) in 10 stream systems across Denali National Park (Alaska, USA) in relation to climatological and meteorological drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that increases in air temperature and reduced snowpack depth, due to climatic change, would reduce beta and gamma diversity but increase alpha diversity. Findings showed temporal trends in alpha diversity were variable across streams, with oscillating patterns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation (temperature and precipitation), but increased over time in several streams supported by a mixture of water sources, including more stable groundwater-fed streams. Beta-diversity over the time series was highly variable, yet marked transitions were observed in response to extreme snowpack accumulation (1999–2000), where species loss drove turnover. Gamma diversity did not significantly increase or decrease over time. Investigating trends in individual taxa, several taxa were lost and gained during a relative constrained time period (2000–2006), likely in response to climatic variability and significant shifts in instream environmental conditions. Findings demonstrate the importance of long-term biological studies in stream ecosystems and highlight the vulnerability of high-latitude streams to climate change.  相似文献   

15.
The benthic macroinvertebrate riffle-pool communities of two east Texas streams were sampled monthly for a period of one year. In contrast to previous studies in primarily upland areas, pools in Alazan Creek and Bernaldo Bayou contained significantly higher densities and biomass, as well as a significantly higher diversity and number of taxa. The majority of taxa collected could be characterized as pool adapted organisms, with the Diptera, Ephemeroptera, Coleoptera, and Odonata having greater numbers in pools. Perlesta, Baetis, and Cheumatopsyche were the only genera to have significant numbers in riffles at both sampling sites. A greater number of taxa were restricted to pools at both sampling locations, and although an unstable, sandy substrate was a factor in limiting colonization of riffles, riffles were not as productive as pools even in the presence of suitable substrate conditions. A cluster analysis based on similarity indices indicated that like habitats between streams were more similar to each other, than were adjacent riffle-pool complexes within streams.  相似文献   

16.
17.
18.
N. A. O'Connor 《Oecologia》1991,85(4):504-512
Summary Woody debris is a major structural component of south-eastern Australian lowland streams, and the decayed wood substrates provide a structurally complex habitat for macroinvertebrate colonization. I tested for the presence of a species richness-habitat complexity relationship for macroinvertebrate species inhabiting the surfaces of decayed submerged logs (snags) in a lowland stream in northern Victoria. The species-habitat complexity relationship is defined as the increase in species richness due to increased structural complexity of a habitat when area is held constant. The response of macroinvertebrates to seven treatments of artificial and natural substrates of differing levels and types of structural complexity were examined using cluster analyses and MANOVAs. These analyses revealed a significant species-habitat complexity relationship. In addition, a comparison of species evenness between simple and complex habitats supported the hypothesis that more complex habitats contained more species because they possessed more resources. Analysis of species richness, though informative, masked the complexity of species responses revealed by multivariate analyses of species abundances. These analyses showed that different species groups selected different microhabitats on snags, particularly in response to the level of sediment deposition, which was greater on more structurally complex snags. In comparison with the benthos, snags were significantly richer in species abundances, possibly related to low levels of dissolved oxygen in benthic habitats.  相似文献   

19.
There are increasing concerns about the ecological effects of water abstraction and in the UK, these concerns have been hightened by the 1976, 1984 and 1988-92 droughts. This paper assesses macroinvertebrate and environmental changes induced by surface and groundwater abstractions on 22 streams throughout the UK.The approach involved comparative research to assess differences between reference and impacted sites.Using a database comprising 204 sets of biological and environmental data (89 taxa and 16 environmental variables) a preliminary ordination using principle components analysis clearly differentiated three types of sites: upland, lowland and an intermediate type. At this scale, any effects of abstractions on invertebrate communities are shown to be insignificant relative to regional controls. A simultaneous ordination of the environmental and faunal differences between pairs of sites was undertaken separately for each of the three regional groups. Differences are considered as vectors having both direction and amplitude and the analysis elucidates common patterns in the faunal and environmental data. Important changes were observed in two situations: upland streams affected by major diversions as part of hydro-power schemes in Scotland and lowland rivers impacted by groundwater abstractions.No strong patterns of change (either in amplitude or orientation) were demonstrated within any of the taxonomic groups. However, within the upland type some rheophilous taxa were shown typically to be reduced in abundance at impacted sites. Within the lowland type, a consistent pattern in the dataset is demonstrated by a group of taxa that are reduced in abundance at the impacted sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号