首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sperm reservoirs have been found in the oviducts of several species of mammals. In cattle, the reservoir is formed by the binding of sperm to fucose-containing glycoconjugates on the surface of oviductal epithelial cells. A fucose-binding molecule was purified from sperm extracts and identified as PDC-109 (BSP-A1/A2), a protein that is secreted by the seminal vesicles and associates with the plasma membrane of sperm upon ejaculation. The objective of this study was to demonstrate that PDC-109 promotes bull sperm binding to oviductal epithelium. PDC-109 was purified from bovine seminal plasma, and polyclonal antibodies were produced in rabbits. The antibodies detected PDC-109 on ejaculated sperm by indirect immunofluorescence and Western blots of extracts, but PDC-109 was not detected on epididymal sperm. When added to epididymal sperm, purified PDC-109 was absorbed onto the plasma membrane overlying the acrosome, as demonstrated by indirect immunofluorescence and by labeling sperm directly with fluorescein-conjugated PDC-109. When added to explants of oviductal epithelium, significantly fewer epididymal sperm than ejaculated sperm became bound. Addition of PDC-109 to epididymal sperm increased epithelial binding to the level observed for ejaculated sperm. In addition, binding of ejaculated sperm to oviductal epithelium was inhibited by addition of excess soluble PDC-109. Ejaculated sperm lost the ability to bind to oviductal epithelium after heparin-induced capacitation, but treatment with PDC-109 restored binding. These results demonstrate that PDC-109 enables sperm to bind to oviductal epithelium and plays a major role in formation of the bovine oviductal sperm reservoir.  相似文献   

2.
Previous reports indicate that glycosaminoglycans (GAGs) would enhance the occurrence of acrosome reactions in sperm in vitro, but continuous exposure of those sperm to seminal plasma prevented a significant incidence of acrosome reactions. This study was designed to evaluate the interaction of GAGs and seminal plasma to promote acrosome reactions in bull sperm in vitro. Epididymal sperm required 22 hr to exhibit acrosome reactions in response to GAGs whereas only 9 hr were needed to achieve the same effect with washed ejaculated sperm. Exposure of epididymal sperm to seminal plasma for 20 min shortened the time for induction of the acrosome reaction to 9 hr. Scatchard analyses of displacement data suggested an alteration in the binding affinity of 3H-heparin to epididymal sperm membrane following the short-term exposure to seminal plasma. High doses (250 and 500 μg/ml) of heparin, heparan sulfate, and chondroitin-4-sulfate were without effect, but doses <100 μg/ml were stimulatory in terms of enhancing acrosome reactions. Compositional studies with seminal plasma revealed a total GAG content of 1.6 mg/ml, proportioned as 61.6% chondroitin sulfates, 17.6% heparin-like material, 0.3% hyaluronic acid, and 20.5% undetermined GAG. It is proposed that seminal plasma can alter the ability of sperm to respond to GAGs, and the high concentrations of GAGs endogenous to seminal plasma may prevent premature initiation of the membrane perturbations necessary for the acrosome reaction.  相似文献   

3.
We demonstrate for the first time that a stable, micron‐scale segregation of focal enrichments of sterols exists at physiological temperature in the plasma membrane of live murine and human sperm. These enrichments of sterols represent microheterogeneities within this membrane domain overlying the acrosome. Previously, we showed that cholera toxin subunit B (CTB), which binds the glycosphingolipid, GM1, localizes to this same domain in live sperm. Interestingly, the GM1 undergoes an unexplained redistribution upon cell death. We now demonstrate that GM1 is also enriched in the acrosome, an exocytotic vesicle. Transfer of lipids between this and the plasma membrane occurs at cell death, increasing GM1 in the plasma membrane without apparent release of acrosomal contents. This finding provides corroborative support for an emerging model of regulated exocytosis in which membrane communications might occur without triggering the “acrosome reaction.” Comparison of the dynamics of CTB‐bound endogenous GM1 and exogenous BODIPY–GM1 in live murine sperm demonstrate that the sub‐acrosomal ring (SAR) functions as a specialized diffusion barrier segregating specific lipids within the sperm head plasma membrane. Our data show significant differences between endogenous lipids and exogenous lipid probes in terms of lateral diffusion. Based on these studies, we propose a hierarchical model to explain the segregation of this sterol‐ and GM1‐enriched domain in live sperm, which is positioned to regulate sperm fertilization competence and mediate interactions with the oocyte. Moreover, our data suggest potential origins of subtypes of membrane raft microdomains enriched in sterols and/or GM1 that can be separated biochemically. J. Cell. Physiol. 218: 522–536, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
1. Approximately 150-fold purified phospholipase A2 (PLA2) from bovine seminal vesicle fluid was injected into rabbit to prepare antibodies. 2. Produced antisera blocked PLA2 activity in bovine seminal plasma, seminal vesicles and its fluid and it gave single precipitation lines with the same samples. No cross-reactivity was detected with other reproductive tissues of bull as well as human seminal plasma. 3. Using indirect peroxidase technique PLA2 was localized in the apical part of epithelia cells of the bull seminal vesicle and also some minor immunohistochemical reactions were observed in the tubular lumen. Indirect peroxidase staining gave weak or no reaction at all to seminal vesicles of immature bulls. This suggests that the enzyme may be under hormonal control. 4. By indirect immunofluorescence method ejaculated spermatozoa of bull revealed immunoreaction which was not uniform and it was restricted to the middle piece, acrosome as well as postacrosomal region, but no specific immunostaining could be found on the surface of the epididymal spermatozoa. 5. Enzyme visualization by immunoelectron microscopic labelling showed a predominant localization in membrane particles inside the lumen of bovine seminal vesicle but some gold particles were also seen in granules, larger vacuoles and in cytoplasm of epithelia cells.  相似文献   

5.
A family of proteins designated BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa, collectively called BSP (bovine seminal plasma) proteins, constitute the major protein fraction of bull seminal plasma. BSP proteins can stimulate sperm capacitation by inducing cholesterol and phospholipid efflux from sperm. Boar seminal plasma contains one homologous protein of the BSP family, named pB1; however, its physiological role is still unknown. In the current study, we report a novel method to purify pB1 from boar seminal plasma by chondroitin sulfate B-affinity chromatography and reverse-phase-high performance liquid chromatography. We also studied the effect of pB1, BSP-A1/-A2, and whole boar seminal plasma on boar sperm capacitation. Boar epididymal sperm were washed, preincubated in noncapacitating medium containing pB1 (0, 2.5, 5, 10 or 20 microg/ml), BSP-A1/-A2 (0 or 20 microg/ml) proteins, or whole seminal plasma (0, 250, 500, or 1000 microg/ml), then washed and incubated in capacitating medium. Acrosomal integrity was assessed by chlortetracycline staining. The status of sperm capacitation was evaluated by the capacity of sperm to undergo the acrosome reaction initiated by the addition of the calcium ionophore, A23187. The pB1 and BSP-A1/-A2 proteins increased epididymal sperm capacitation as compared with control (sperm preincubated without proteins). This effect reached a maximum level at 10 microg/ml pB1 and at 20 microg/ml BSP-A1/-A2 (2.3- and 2.2-fold higher than control, respectively). Whole boar seminal plasma did not induce sperm capacitation. In addition, pB1 bound to boar epididymal sperm and was lost during capacitation. These results indicate that BSP proteins and their homologs in other species induce sperm capacitation in a similar way.  相似文献   

6.
Bovine spermatozoa that have been exposed to seminal plasma possess more binding sites for heparin than sperm from the cauda epididymis that have not been exposed to accessory sex gland secretions. Seminal plasma exposure enables sperm, following incubation with heparin, to undergo zonae pellucidae-induced exocytosis of the acrosome. In this study, the regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa by heparin was investigated. Plasma membranes from sperm exposed to seminal plasma in vivo or in vitro contained a series of acidic 15-17 kDa proteins not found in cauda epididymal sperm. Western blots of membrane proteins indicated that these 15-17 kDa proteins bound [125I]-heparin. Heparin-binding proteins were isolated by heparin affinity chromatography from seminal plasma from vasectomized bulls. Gel electrophoresis indicated that the heparin-binding peaks contained 14-18 kDa proteins with isoelectric variation, a basic 24 kDa protein, and a 31 kDa protein. Western blots probed with [125I]-heparin confirmed the ability of each of these proteins to bind heparin. Each of these proteins, as well as control proteins, bound to epididymal sperm. The seminal plasma proteins were peripherally associated with sperm since they were removed by hypertonic medium and did not segregate into the detergent phase of Triton X-114. Seminal plasma heparin-binding proteins potentiated zonae pellucidae-induced acrosome reactions in epididymal sperm. However, seminal plasma proteins that did not bind to the heparin affinity column were unable to stimulate zonae-sensitivity. Control proteins, including lysozyme--which binds to both heparin and sperm, were ineffective at enhancing zonae-induced acrosome reactions. These data provide evidence for a positive regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa.  相似文献   

7.
Abstract

Bovine sperm heads were separated via ultrasonic treatment and centrifugation. Anti‐bull sperm IgG was produced by immunizing rabbits with acrosome‐reacted bull sperm heads. SDS PAGE patterns revealed that the main membrane proteins on acrosome‐reacted bull sperm head were sp18 family, including 18, 16, and 14 kD, which represented about 64% of the total membrane proteins in bull sperm. Indirect immunofluorescence shown sp18 antigens primarily distributed in postacrosomal and proximal tail regions. Western blot analysis revealed that the anti‐bull sperm IgG reacted with sp18 antigens in acrosome‐reacted bull sperm head and bull seminal plasma. Anti‐bull sperm IgG also reacted with 14, 16, 18, 42, 57 and 60 kD proteins in fresh bull, mouse and rabbit sperm. Anti‐sp18 IgG caused agglutination of bull and rabbit sperm, but had no effect on murine sperm. In murine in vitro fertilization trials, preincubating capacitated sperm with 0.364 mg/ml of anti‐sp18 IgG resulted in a decrease in the fertilization rate from 75.6% in the controls to 50.8% in the experimental groups (p<0.001).  相似文献   

8.
A polyclonal rabbit antibody against 5-nucleotidase purified from bull seminal plasma was used to localize the antigen on bovine spermatozoa. Spermatozoa taken from the ampulla of the vas deferens showed strong immunofluorescence at the anterior rim of the head portion. Evaluation of spermatozoa prepared from different segments of the seminal pathway indicated the presence of the antigen already in rete testis and epididymal spermatozoa. On cryostat sections of testis tissue a positive immunoreaction was found in the anterior head portion of elongated spermatids, but not in earlier forms of sperm development. This distribution corresponded with the enzyme activity and results of Western blotting in extracts of testicular and epididymal spermatozoa. Immunoelectron microscopy of ampullary spermatozoa using antibody detection with gold-labelled anti-rabbit IgG showed a clear-cut labelling of the plasma membrane in the acrosome region. Treatment of ampullary spermatozoa with 0.1% Triton X-100 did not completely remove the immunoreactive material from the acrosome, showing a very stable linkage of the protein to the plasma membrane. Treatment with phospholipase C from Bacillus thuringiensis, however, removed immunoreactive material from the plasma membrane, indicating its binding by a phosphoinositol anchor. Our findings show that endogenous 5-nucleotidase is present on the plasma membrane covering the anterior head portion of bovine spermatozoa and indicate specialized functions during the acrosomal reaction. Soluble enzyme derived from seminal vesicle secretion covers the whole sperm surface during emission, but is not covalently bound. It provides generalized enzyme activity to the sperm surface in addition to the specialized area of the sperm head.  相似文献   

9.
The acrosome reaction is a fundamental event in the biology of the sperm and is a prerequisite to fertilization of the egg. Members of the Rho family of GTPases and their effectors are present in the cytoplasm and/or plasma membrane overlying the acrosome of porcine sperm. We have implicated the Rho family of GTPases and the Rho-activated kinase, ROCK-1, in mediating the zona-pellucida-induced acrosome reaction. Others have implicated the Rho GTPase in regulating the ionophore-induced acrosome reaction in the sperm of several mammalian species as well as in motility of bovine sperm. In this study, the localization of the Rho GTPases (RhoA, RhoB, Rac1 and Cdc42) as well as the effectors RhoGDI, PI(4)P5K and ROCK-1, was determined in boar, human, rat, ram, bull and elephant sperm. The four GTPases were each present in the sperm head of all species examined. RhoGDI was expressed in the head and tail of sperm from all species except pig, where it was present only in the head. PI(4)P5K was expressed in both head and tail of sperm from all species, but expression was typically weaker in the tail. Finally, ROCK-1 was expressed in the heads and tails of all sperm except that of the boar, where it was present only in the acrosomal region. These observations taken together suggest that the expression of Rho GTPases in sperm has been conserved throughout mammalian evolution, most likely due to the role of these GTPases in regulating acrosomal exocytosis.  相似文献   

10.
Indirect immunofluorescence studies with polyclonal antibodies show that caltrin binds to the plasma membrane over the acrosome and principal tail regions of bovine spermatozoa but not to the postacrosomal area or the midpiece. Calcium influx into bovine epididymal spermatozoa maintained in a simple salt medium containing DL-beta-hydroxybutyrate is prevented by caltrin freshly prepared from bovine seminal plasma through a procedure employing only gel permeation columns. Older preparations, on the other hand, enhance calcium uptake into these cells. Caltrin freshly prepared through a purification scheme that includes a cation exchanger only induces enhancement of calcium uptake into bovine epididymal spermatozoa maintained under identical conditions. It is postulated that early during sperm transit through the female reproductive tract, caltrin bound to the sperm plasma membrane protects the sperm cells from calcium influx. As the cells enter the oviduct where meeting with the egg could take place, factors present in the surrounding milieu may cause caltrin to change from an inhibitor to an enhancer of calcium uptake. The acrosome reaction and possibly hyperactivation, two components of capacitation that require calcium influx as an initial event, then take place.  相似文献   

11.
Maturing spermatozoa acquire full fertilization competence by undergoing major changes in membrane fluidity and protein composition and localization. In epididymal spermatozoa, several proteins are associated with cholesterol- and sphingolipid-enriched detergent-resistant membrane (DRM) domains. These proteins dissociate from DRM in capacitated sperm cells, suggesting that DRM may play a role in the redistribution of integral and peripheral proteins in response to cholesterol removal. Since seminal plasma regulates sperm cell membrane fluidity, we hypothesized that seminal plasma factors could be involved in DRM disruption and redistribution of DRM-associated proteins. Our results indicate that: 1) the sperm-associated proteins, P25b and adenylate kinase 1, are linked to DRM of epididymal spermatozoa, but were exclusively associated with detergent-soluble material in ejaculated spermatozoa; 2) seminal plasma treatment of cauda epididymal spermatozoa significantly lowered the content of cholesterol and the ganglioside, GM1, in DRM; and 3), seminal plasma dissociates P25b from DRM in epididymal spermatozoa. We found that the seminal plasma protein, Niemann-Pick C2 protein, is involved in cholesterol and GM1 depletion within DRM, then leading to membrane redistribution of P25b that occurs in a very rapid and capacitation-independent manner. Together, these data suggest that DRM of ejaculated spermatozoa are reorganized by specific seminal plasma proteins, which induce lipid efflux as well as dissociation of DRM-anchored proteins. This process could be physiologically relevant in vivo to allow sperm survival and attachment within the female reproductive tract and to potentiate recognition, binding, and penetration of the oocyte.  相似文献   

12.
Previous studies from our laboratory have reported empirical associations between bovine seminal plasma protein(s) (BSP) A1/A2 and 30 kDa and osteopontin (OPN) in accessory sex gland fluid and bull fertility. These BSP and OPN are believed to bind to sperm at ejaculation and to remain bound until sperm reach the oviduct. The objective of the present study was to evaluate the topographical distribution of BSP A1/A2, 30 kDa and OPN binding on: (1) bovine ejaculated sperm; (2) ejaculated sperm incubated with isthmic oviductal fluid (ODF); (3) ejaculated sperm+isthmic ODF incubated in ampullary ODF. From each of these media, aliquots of sperm for BSP and OPN were processed for immunocytochemistry and analysis by laser scanning confocal microscopy. Isthmic and ampullary ODF was collected from indwelling catheters and used as pools from three cows in the non-luteal phase of the estrous cycle. Anti-BSP A1/A2 was detected bound to the midpiece, post-equatorial and equatorial segments and acrosome of sperm after ejaculation and after incubation with isthmic and ampullary ODF. The BSP A1/A2 fluorescence was more concentrated on the midpiece and increased as acrosome-intact sperm came in contact with ODF. As compared with acrosome-intact sperm, non-intact acrosome intact sperm had 39 and 68% reductions of acrosome fluorescence and 36% and 90% increases of post-equatorial fluorescence after contact with isthmic and ampullary ODF (P<0.05). Anti-BSP 30 kDa was more intense on the midpiece than on post-equatorial, equatorial and acrosome regions of sperm after ejaculation and contact with ODF. However, equatorial fluorescence was 141% and 89% more intense and acrosome stainning was 80% and 76% less (P<0.05) in non-intact acrosome sperm than in acrosome intact cells, during all ODF incubations. Anti-OPN was identified on the acrosome of ejaculated sperm, but with less fluorescence (P<0.05) on the post-equatorial segment and midpiece. Incubation of sperm with isthmic ODF increased fluorescence on post-equatorial segment (P<0.05). There were 72% and 78% reductions (P<0.05) of acrosome fluorescence and intensification (P<0.05) in equatorial fluorescence in non-intact acrosome sperm as compared with acrosome intact cells incubated with isthmic and ampullary ODF. In summary, interactions of BSP A1/A2 and 30 kDa and osteopontin with the sperm membrane undergo modifications dictated by the oviductal fluid. The BSP are thought to modulate cholesterol and phospholipid movement from the sperm membrane and help sperm binding to the oviductal epithelium. Furthermore, our model suggests that OPN participates in sperm-oocyte interaction, affecting fertilization and early embryonic development.  相似文献   

13.
Murine cauda epididymal sperm contain sites on the plasma membrane over the apical portion of the acrosome that recognize proteinase inhibitors and the homologous zona pellucida. Ten times more of the component can be extracted from cauda and ductus sperm than from equal numbers of caput and corpus sperm. Likewise, few sperm from the upper epididymal regions are able to bind seminal inhibitor, while the majority of sperm from the cauda and ductus do bind. Cauda epididymal and ductus sperm lose little of their ability to bind inhibitor after a 4-hour in vitro incubation in either a capacitating or a noncapacitating medium. The percentage of naturally inseminated sperm with the seminal inhibitor bound to their surface decreases to about 10 after 4 hours in utero. Approximately 80% of these sperm show positive fluorescence when given the opportunity to rebind the inhibitor, and these sperm do have an intact plasma membrane over the apical portion of the acrosome. Furthermore, after 4 hours in utero, the inhibitor bound in the same region of the sperm head as it did on freshly ejaculated sperm. The seminal inhibitor inhibits the binding of sperm to the zona if added during the first 15 minutes of incubation but has no effect on attachment. The data indicate that sperm gain the ability to bind the seminal inhibitor during the epididymal sojourn. Furthermore, this binding capacity is not lost during in vitro or in utero incubation. The site is not involved in sperm-zona attachment but does participate in the binding of sperm to the zona.  相似文献   

14.
The effect of heparin (5 IU), caffeine (5 mM) and calcium-ionophore A23187 (0.1 mM) on motility and in vitro induction of the acrosome reaction in glass wool filtered frozen-thawed bull and goat semen was studied. The motile spermatozoa fraction was obtained after glass wool filtration of frozen-thawed semen. The seminal plasma was removed from filtered semen by centrifugation, and the sperm pellet was resuspended in Sperm-TALP medium. Samples of treated and untreated control semen of both species were incubated at 37 degrees C. At 1, 15 and 30 min of incubation the proportions of progressively motile and acrosome-reacted spermatozoa were assessed. Trypan blue and Giemsa stain was used to differentiate live and dead spermatozoa having undergone acrosome reaction. Glass wool filtration enhanced the proportion of motile spermatozoa from 43% to 62% in the bovine and from 41% to 60% in the caprine. Whereas the effect of incubation with caffeine, heparin and calcium-ionophore on spermatozoan motility was negligible, the treatment of semen with calcium-ionophore resulted in a significantly improved percentage of live spermatozoa with true acrosome reaction at all stages of incubation, both in the bovine and the caprine.  相似文献   

15.
Prior to fertilization, mammalian spermatozoa need to acquire fertilizing ability (capacitation) in the female reproductive tract. On the other hand, capacitated spermatozoa reversibly lose their capacitated state when treated with seminal plasma (decapacitation). Previously, we demonstrated that a mouse seminal plasma protein, SVS2, is a decapacitation factor and regulates sperm fertilizing ability in vivo. Here, we examined the mechanisms of regulation of fertilizing ability by SVS2. Capacitation appears to be mediated by dynamic changes in lipid rafts since release of the cholesterol components of lipid rafts in the sperm plasma membrane is indispensable for capacitation. When the ejaculated spermatozoa were stained with a cholera toxin subunit B (CTB) that preferably interacts with ganglioside GM1, another member of the lipid rafts, the staining pattern of the sperm was the same as the binding pattern of SVS2. Interestingly, SVS2 and CTB competitively bound to the sperm surface with each other, suggesting that the binding targets of both molecules are the same, that is, GM1. Molecular interaction studies by the overlay assay and the quartz crystal microbalance analysis revealed that SVS2 selectively interacts with GM1 rather than with other gangliosides. Furthermore, external addition of GM1 nullified SVS2-induced sperm decapacitation. Thus, ganglioside GM1 is a receptor of SVS2 and plays a crucial role in capacitation in vivo.  相似文献   

16.
Heparin binds to bovine sperm and stimulates capacitation in vitro. Seminal plasma alters the ability of epididymal sperm to bind heparin, and several heparin-binding proteins (HBPs) have been identified in bull seminal plasma. This study had three objectives: 1) to identify production sites of seminal plasma HBPs, 2) to determine which HBPs bound to cauda epididymal sperm, and 3) to determine whether presence of HBPs was testosterone dependent. Proteins from bull or rat seminal vesicles, prostates, and bulbourethral glands were separated by heparin affinity high-performance liquid chromatography. HBPs were found in all accessory glands of rats and bulls, but the major source of bovine seminal plasma HBPs appeared to be seminal vesicles. Between 25% and 50% of the protein from each gland bound to the heparin column, and NaCl concentrations required to elute proteins ranged from 0.15 to 1.4 M. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that major HBPs were relatively small, with molecular weights between 13 and 31 kDa, but some HBPs also exhibited higher molecular weights, between 40 and 100 kDa. Radioiodinated HBPs from each bovine gland were incubated with epididymal sperm. Labeled HBPs binding to sperm exhibited molecular weights of 14, 16, 24, and 30 kDa as determined by SDS-PAGE and autoradiography. The HBP content of the accessory sex glands decreased significantly in castrated rats and was restored to levels of sham-operated controls by testosterone replacement. Heparin-binding proteins may play a role in fertilization by attaching to sperm surfaces, enabling heparin-like glycosaminoglycans in the female reproductive tract to induce capacitation.  相似文献   

17.
The effects of accessory sex gland secretions on the zona pellucida-induced acrosome reaction of bovine spermatozoa were investigated. Soluble extracts of zonae pellucidae initiated exocytosis in ejaculated spermatozoa. This process had an ED50 of 20 ng/microliter zona pellucida protein and saturated at 50 ng/microliter (Florman and First, 1988. Dev. Biol. 128, 453-463). In epididymal sperm this dose-response relationship was shifted toward greater agonist concentrations by at least a factor of 10(3). Reconstitution of high potency agonist response was achieved in vitro by incubation of epididymal sperm with bovine seminal plasma. Reconstitution was dependent on the seminal plasma protein concentration. The ED50 of this process was 62 micrograms protein/10(8) sperm and saturation was observed with 124 micrograms protein/10(8) sperm. Agonist responses in reconstituted epididymal sperm and in ejaculated sperm were indistinguishable with regard to dependence on the zona pellucida protein concentration and the kinetics of induced acrosome reactions. Kinetic studies suggest that reconstitution is due to adsorption of regulatory factors from seminal plasma. In addition to the positive regulatory elements responsible for reconstituting activity, seminal plasma also contains negative regulatory elements which inhibit agonist response. These negative factors are inactivated during sperm capacitation, permitting the expression of positive regulators. Acting together, these regulatory elements could coordinate high affinity agonist response with the availability of eggs in vivo.  相似文献   

18.
Epididymal spermatozoa from bull, rabbit and ram were incubated in homologous epididymal plasma or seminal plasma in a buffered saline-based medium with or without serum albumin. The spermatozoa were either diluted directly into the medium or were washed first. No effect of washing was observed on the subsequent reaction of the cells to the different media. A considerable proportion of the populations of epididymal spermatozoa survived (i.e. continued to exhibit motility) for up to 22 h at 30 degrees C in the simple saline-based medium. Initially epididymal plasma had a slight stimulatory effect on sperm motility in ram and bull but it had no effect on sperm survival in any of the 3 species. Seminal plasma stimulated motility markedly in ram initially, but in all 3 species seminal plasma was detrimental to survival: in ram even a 15-min exposure to the fluid reduced survival. Serum albumin also stimulated motility; it delayed, but did not prevent, the detrimental effect of seminal plasma, although it had no effect itself on survival. The effects of epididymal plasma, seminal plasma and serum albumin on surface properties of epididymal spermatozoa, i.e. agglutination, sticking-to-glass and eosinophilia, were also noted. These varied between species and there was no correlation between these effects and the effects on motility and survival.  相似文献   

19.
Sperm capacitation is a maturation step that is deemed to be essential for sperm to fertilize an oocyte. A family of proteins, the binder of sperm (BSP), are known to bind choline phospholipids on sperm membranes and promote capacitation in bulls and boars. Recently, BSP-homologous genes have been identified in the epididymal tissues of human (BSPH1) and mouse (Bsph1, Bsph2). The aim of this study was to determine the binding characteristics of the murine binder of sperm protein homolog 1 (BSPH1) and evaluate its effects on sperm capacitation. Since it is not possible to purify the native BSP proteins from human and mouse in sufficient quantity, a murine recombinant BSPH1 (rec-BSPH1) was produced and used for the functional studies. Similarly to BSP proteins from other species, rec-BSPH1 bound to gelatin, heparin, phosphatidylcholine liposomes, and sperm. Both native BSPH1 and rec-BSPH1 were detected on the head and the midpiece region of sperm, although a stronger signal was detected on the midpiece region when sperm were incubated in a capacitating media containing bovine serum albumin. More importantly, murine rec-BSPH1 was able to capacitate sperm, but was unable to induce the acrosome reaction. These results show that murine epididymal BSPH1 shares many biochemical and functional characteristics with BSP proteins secreted by seminal vesicles of ungulates, and suggest that it might play a similar role in sperm functions.  相似文献   

20.
Graham JK 《Theriogenology》1994,41(5):1151-1162
Experiments were conducted to investigate the effect of seminal plasma on sperm motility during the cryopreservation process. Ejaculated and epididymal spermatozoa from the ram and the bull were washed by centrifugation and resuspended in either seminal plasma or a modified Tyrode's medium (TALP) prior to dilution in medium suitable for cryopreservation. Resuspension of washed ejaculated ram spermatozoa in seminal plasma resulted in higher percentages of motile spermatozoa than resuspension in TALP after the spermatozoa were cooled to 5 degrees C (52 vs 35%), and after thawing (14 vs 9%), respectively. Resuspension of epididymal ram spermatozoa in seminal plasma had no beneficial effect in maintaining sperm motility after cooling (78 vs 73%); however, seminal plasma was beneficial to epididymal ram spermatozoa after thawing (34 vs 3%), respectively. Resuspension of washed ejaculated bull spermatozoa in either seminal plasma or TALP had no effect on the percentage of motile spermatozoa after cooling to 5 degrees C (73 vs 75%) or after thawing (60 vs 60%), respectively. In addition, seminal plasma had no beneficial effect on the percentage of motile epididymal bull spermatozoa when compared with that of TALP-treated spermatozoa after cooling (75 vs 72%) or after thawing (66 vs 63%), respectively. Seminal plasma from different sires (ram and bull) affected epididymal sperm motility. The ability of sperm cells to withstand damage during cryopreservation, however, appears to reside in the sperm cells themselves, probably due to sperm cell composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号