首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the involvement of the CYP17, SRD5A2, CYP1B1, and CYP2D6 variants with prostate cancer, a case-control study of 100 patients and an equal number of age-matched control men was conducted. There appears to be a nonsignificant increase with risk of prostate cancer for individuals carrying one copy of the CYP17 A2 allele (OR, 1.80; 95% CI, 0.99-3.29, P=0.05). The risk was increased in individuals having two A2 alleles (OR; 2.81, 95% CI, 1.06-7.40, P=0.03). Compared with men having the VV genotype of SRD5A2 gene, there was no significant association between the VL genotype and the risk of prostate cancer (OR; 0.54, 95% CI; 0.29-1.03, P=0.06). There was no difference in the occurrence of the genotype LL between controls and prostate cancer patients (OR; 0.90, 95% CI; 0.43-1.89, P=0.79). There was a nonsignificant increased risk of prostate cancer for individuals carrying the CYP1B1Leu/Val genotype (OR, 1.70, 95% CI, 0.91-3.17, P =0.09), which was increased in those having the Val/Val allele (OR, 3.38; 95% CI, 1.13-10.07, P=0.02). Relative to men homozygous for the wild-type allele in CYP2D6 gene, those heterozygous for the B allele had an odds ratio of 1.78 (95% CI, 0.76-4.17, P=0.18) for patients, and for homozygous individuals, it was 1.95 (0.55-6.93, P=0.30). These observations have suggested that the CYP17 A2/A2, CYP1B1 Val/Val, and CYP2D6 genotypes may be associated with an altered risk of prostate cancer, while the CYP2D6 and SRD5A2 V89L polymorphism have no association with its risk in the North Indian population.  相似文献   

2.
Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.  相似文献   

3.
The CYP2C9 enzyme metabolizes a wide range of relevant drugs, among which are oral anticoagulants. VKORC1 is the pharmacodynamic target of the oral anticoagulants. The genetic polymorphisms CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A are the major determinants of the inter‐individual variability in the dosage requirements of oral anticoagulants. This study provides a first evaluation of these 3 polymorphisms in a Romanian population. A total of 332 Romanian individuals were genotyped for the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms using the PCR‐RFLP technique. Sixty‐two individuals (18.7%) were heterozygous for CYP2C9*2, whereas 47 individuals (14.1%) were heterozygous for CYP2C9*3. Fourteen individuals (4.2%) had a CYP2C9*2 homozygous, CYP2C9*3 homozygous or CYP2C9*2/CYP2C9*3 compound heterozygous genotype. These individuals are predicted to have the lowest CYP2C9 enzymatic activity. The allele frequencies of the CYP2C9*2 and CYP2C9*3 polymorphisms were 11.3% and 9.3% respectively. For the VKORC1 ‐1639 G>A polymorphism, there were 170 heterozygotes (51.2%) and 55 (16.6%) homozygotes for the A allele. The frequency of the A allele was 42.2%. Overall, the distribution of the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms observed in our cohort is in accordance with other Caucasian populations. A large number of Romanians are expected to harbour at least one CYP2C9 variant allele and/or one VKORC1 ‐1639 G>A allele. This frequency has major implications in the pharmacogenomics of oral anticoagulants in Romanians.  相似文献   

4.
AimsIn this study, the effects of four single nucleotide polymorphisms (SNPs), ? 3860G > A, ? 2467delT, ? 739T > G and ? 163C > A, of CYP1A2 gene on lung cancer were evaluated in Tunisian population.Main methodsFour polymorphisms of CYP1A2 gene were analysed in 109 healthy smokers and in 101 lung cancer cases, including 63 with squamous cell carcinoma (SCC) and 41 with adenocarcinoma (AD). The genotyping for the SNPs ? 3860 G > A, ? 2467delT, ? 739T > G and ? 163C > A was performed by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis.Key findingsThe results showed that smokers with CYP1A2 gene polymorphisms were associated with an increased risk for the development of lung AD. There was however no significant increased risk of developing lung SCC in smokers having CYP1A2 gene polymorphisms. An increased risk of developing AD was observed in smokers who are carriers of at least one copy of ? 3680A or ? 739G giving a significant odds ratio (OR) of 6.02 (CI = 2.91–12.9) and 3.01 (CI = 1.54–5.98), respectively.SignificanceThese genotyping data are consistent with the hypothesis that tobacco-specific-N-nitrosamines (TSN) such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are major contributors to the development of lung AD and that CYP1A2 gene product plays an important role in the metabolic activation of NNK. This study suggests that SNPs of CYP1A2 could be considered as promising biomarkers in the aetiology of lung AD in smokers.  相似文献   

5.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

6.
Bilgen T  Tosun O  Luleci G  Keser I 《Genetika》2008,44(8):1133-1136
Cytochrome P450 (CYP) 1A2 gene is involved in the metabolic activation of several carcinogens and altered metabolization of some clinically used drugs. We aimed to investigate the distributions of genetic polymorphisms -3860 (G/A)(CYP1A2*1C) and -2467 (T/del)(CYP1A2*1D) in the 5'-flanking region and -739 (T/G)(CYP1A2*1E) and -163(C/A)(CYP1A2*1F) in the first intron of the CYP1A2 gene in 110 unrelated healthy Turkish volunteers by PCR-RFLP technique. The frequencies of each polymorphism in Turkish population were found as 0.04, 0.92, 0.01, 0.27 for CYP1A2*1C, CYP1A2*1D, CYP1A2*1E, CYP1A2*1F, respectively. Compared with other populations, CYP1A2*1D has been found to be significantly increased in Turkish population. On the other hand, in general, the frequencies of the other polymorphisms were concordant with those in the Egyptian and Caucasian populations, and were different from those in the Japanese, Chinese and Ethiopian populations. Our results suggest that due to increased frequency of CYP1A2*1D in Turkish population, functional significance of CYP1A2*1D should be evaluated. It might be screened to determine the relationship between CYP1A2*1D and CYP1A2 related drug metabolisms in associated groups.  相似文献   

7.
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.  相似文献   

8.
BACKGROUND: CYP1A1 is a gene involved in the high aryl hydrocarbon hydroxylase -inducible phenotype, which is a genetically-determined variation among individuals that has been associated with lung cancer risk. More specifically, CYP1A1 *2B and *4 polymorphisms have been associated with high susceptibility to lung cancer among cigarette smokers. MATERIALS AND METHODS: DNA was obtained from blood samples and we studied by PCR-RFLP the distribution of CYP1A1 *2B (n=248) and *4 (n=222) polymorphisms in healthy controls and 222 lung cancer patients from a Mexican population. RESULTS: Comparisons between groups showed an increased risk for lung cancer patients of *2B/*2B (18%; OR 7.6; 95% CI 3.0-19.2) and *4/ *4 genotypes (15%; OR 11.45; 95% CI 2.19-59.85) compared to the control group (1% for *2B/ *2B and 4.4% for *4/ *4). A significant association between lung cancer and homozygous *2B/ *2B passive smokers and *4/*4 ever (cigarettes) and passive smokers was also observed (p<0.05). Multivariate analysis revealed an increased risk for the *2B/*2B genotype (OR 6.83), as well as for *4/*4 (OR 28.8). CONCLUSION: The results of the study indicate a significant association between *2B/*2B and *4/*4 genotypes and the risk of developing lung cancer among Mexicans.  相似文献   

9.
This case-control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42-355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

10.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

11.
The aim of the present study was to establish the gene frequency of six polymorphisms of the ABCB1, CYP3A5, CYP2C19, and P2RY12 genes in a population resident of Mexico City. The proteins encoded by these genes have been associated with the absorption, and biotransformation of clopidogrel. The ABCB1 T3435C, CYP3A5 V3* A6986G, P2RY12 G52T, P2RY12 C34T, CYP2C19 V2* and V3* (positions G681A and G636A, respectively), polymorphisms were analyzed by 5′ exonuclease TaqMan genotyping assays in a group of 269 healthy unrelated Mexican Mestizo individuals. The CYP2C19 V3* G636A polymorphism was not detected in the Mexican Mestizos population. However, the studied population presented significant differences (P < 0.05) in the distribution of the T3435C, A6986G, G681A, G52T and C34T polymorphisms when compared to reported frequencies of Amerindian of South America, Caucasian, Asian, and African populations. In summary, the distribution of the ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms distinguishes to the Mexican Mestizos population from other ethnic groups.  相似文献   

12.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

13.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

14.
Clopidogrel is one of the most commonly prescribed drugs, as its combination with low-dose aspirin is the recommended oral anti-platelet therapy, to prevent ischaemic events following coronary syndromes or stent placement. Numerous recent studies have shown that polymorphisms in the gene encoding the cytochrome P450 (CYP450) 2C19 enzyme (CYP2C19) contribute to variability in response to clopidogrel; patients with certain common genetic variants of CYP2C19 (*2, *3) have a reduced metabolism of clopidogrel and have a higher rate of cardiovascular events or stent thrombosis compared to patients with the CYP2C19 (*1) allele. CYP2C19*2 is most common in Caucasians, Africans and Asians while CYP2C19*3 has been found mostly in Asians. Since the prevalence of these variants in the Lebanese population has not yet been reported, our aim was to determine the genotypes of CYP2C19 in our population. CYP2C19 (*1/*2/*3) variants were assessed by Polymerase Chain Reaction-Restriction Length Polymorphism (PCR–RFLP) assays in a representative sample of 161 unrelated healthy Lebanese volunteers. The allele frequencies of CYP2C19 *2 and *3 were 0.13 and 0.03. Carriers of the CYP2C19 *2 or *3 represented 24.2% of the subjects. Our data show no significant difference in the frequency of CYP2C19 allelic variants when compared to Caucasian populations and demonstrate that the application of the recent FDA recommendations would also be beneficial in Lebanon, allowing physicians to identify patients at high risk for atherothrombotic events, and eventually advising them to consider other antiplatelet medications or alternative dosing strategies in poor metabolizers.  相似文献   

15.
CYP2S1 is a recently discovered member of the cytochrome P450 (CYP) gene superfamily. Interestingly, even though the DNA sequence identifies it as the sole member of the new CYP2S family, CYP2S1 exhibits many features typical to CYP1 family members, e.g. dioxin-inducibility mediated by the aryl hydrocarbon receptor (AHR) and the aryl hydrocarbon receptor nuclear translocator (ARNT). In addition, CYP2S1 metabolises some aromatic hydrocarbons as well as cellular substances. These characteristics, together with a wide extrahepatic tissue distribution, suggest that CYP2S1 may have an important role in both exogenous and endogenous metabolism. This is the first study characterising CYP2S1 alleles and naming them with the recommended CYP allele nomenclature. We used denaturing gradient gel electrophoresis (DGGE) and direct sequencing to investigate genetic variation of CYP2S1 in 100 male Finnish Caucasians. Those exons in which variation was found were examined in subsequent 100 subjects. The coding region of all of the nine exons, as well as a 449 bp fragment of the proximal promoter region, was analysed. This systematic investigation revealed eight single nucleotide polymorphisms (SNPs), which comprise nine different variant alleles (haplotypes), in addition to the wild-type allele. Seven of the SNPs occurred in the protein-coding areas and one in the proximal 3' untranslated region (3'UTR). Two of these sequence variations (10347C > T and 13106C > T) result in non-conservative amino acid substitutions, i.e. Arg380Cys and Pro466Leu, respectively. The respective allelic variants, CYP2S1*2 ([10347C > T]) and CYP2S1*3 (13106C > T; 13255A > G]), occurred in our study population at frequencies of 0.50 and 3.75%, respectively. The most common of the variant alleles was CYP2S1*1H (23.8%), harbouring a 13255A > G substitution located in the 3'UTR.  相似文献   

16.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

17.
CYP2C9 is a genetically polymorphic human cytochrome P450 isozyme involved in the oxidative metabolism of many drugs, including nonsteroidal anti-inflammatory compounds. Individuals genotyped heterozygous or homozygous for CYP2C9 allelic variants have demonstrated altered metabolism of some drugs primarily metabolized by CYP2C9. The ability to expand screening of CYP2C9 allelic variants to a larger set of drugs and pharmaceutical agents would contribute to a better understanding of the significance of CYP2C9 polymorphisms in the population and to predictions of possible outcomes. The authors report the development of an in vitro fluorescence-based assay employing recombinant CYP2C9 variants (CYP2C9*1, CYP2C9*2, and CYP2C9*3) and fluorogenic Vivid(R) CYP2C9 substrates to explore the effects of CYP2C9 polymorphisms on drug metabolism, using drugs primarily metabolized by CYP2C9. Several chemically diverse fluorogenic substrates (Vivid(R) CYP2C9 blue, green, and red substrates) were used as prototypic probes to obtain in vitro CYP2C9 metabolic rates and kinetic parameters, such as apparent K(m), V(max), and V(max)/K(m) ratios for each allelic variant. In addition, a diverse panel of drugs was screened as assay modifiers with CYP2C9*1, CYP2C9*2, CYP2C9*3, and the fluorogenic Vivid(R) CYP2C9 substrates. The inhibitory potential of this large group of chemically diverse drugs and compounds has been assessed on the basis of their ability to compete with Vivid(R) CYP2C9 substrates in fluorescent reporter assays, thus providing a sensitive and quick assessment of polymorphism-dependent changes in CYP2C9 metabolism.  相似文献   

18.
CYP1B1 is the enzyme with the highest efficiency of conversion of estradiol to 4-hydroxyestradiol in humans. This metabolite has a well-known carcinogenic effect interacting with genomic DNA and has been hypothesized to be partly responsible for the role played by estrogens in ovarian cancer development. A polymorphism has been described for this enzyme causing a Leu to Val substitution in position 432 (CYP1B1*3). The Val432 allele has a higher efficiency of conversion of estradiol to 4-hydroxyestradiol and has been reported to increase the risk of ovarian cancer. A previous study reported a higher, significant prevalence of CYP1B1*3 polymorphism in ovarian cancer patients of mixed ethnicity. The aim of this study was to investigate the role of CYP1B1*3 polymorphism as a risk factor for ovarian cancer in a Caucasian population. The polymorphism frequency was determined in 223 cases of ovarian cancer and compared with that of 280 healthy female blood donors. Genetic analysis was performed on genomic DNA from PBMC and RFLP methods were used for mutation detection. No significant difference between cases and controls was found. These results do not support a favoring role of CYP1B1*3 in ovarian cancer development in our population.  相似文献   

19.
Feeding soy diets has been shown to induce cytochrome P450s in gene family CYP3A in Sprague-Dawley rat liver. We compared expression of CYP3A enzymes on postnatal Day 33 (PND33) rats fed casein or soy protein isolate (SPI+)-based AIN-93G diets continuously from gestational Day 4 through PND33 or the diets were switched on PND15 (n = 3-6 litters) to examine the potential imprinting effects of soy on drug metabolism. In addition rats were fed casein, SPI+, SPI+ stripped of phytochemicals (SPI-), or casein diets supplemented with the soy-associated isoflavones genistein or daidzein from weaning through PND33 to examine the hypothesis that the isoflavones are responsible for CYP3A induction by soy feeding. Feeding SPI either continuously or from weaning induced hepatic CYP3A1 and CYP3A2 mRNA, apoprotein, and CYP3A-dependent testosterone 6beta-hydroxylase activity in liver microsomes 2- to 5-fold (P < 0.05). CYP3A mRNA expression was also elevated 2- to 3-fold in the jejunum of SPI-fed rats (P < 0.05). CYP3A was not induced in livers of rats switched to casein from soy at weaning. Induction of CYP3A1 also did not occur in rats fed SPI-, but CYP3A2 mRNA and apoprotein were induced (P < 0.05) in females fed SPI-. Offspring weaned onto genistein-supplemented diets had no elevation of CYP3A mRNAs or apoproteins. Weaning onto daidzein diets increased CYP3A2 mRNA and apoprotein expression in male rats (P < 0.05). These data suggest that early soy consumption may increase the metabolism of a wide variety of CYP3A substrates, but that soy does not imprint the expression of CYP3A enzymes. Effects on CYP3A1 expression appear to be primarily due to phytochemical components of SPI other than isoflavones. In contrast, consumption of soy protein and daidzein appear to be associated with the induction of CYP3A2.  相似文献   

20.

BACKGROUND:

Genetic variants of the organic cation transporter (OCT1) gene could influence interindividual variation in clinical response to metformin therapy. The genetic basis for the single-nucleotide polymorphism (SNP) of OCT1 gene has been established in other populations, but it remains to be elucidated in the Indian population. This study is focused on OCT1 gene variants rs2282143 (P341L, 1022C>T), rs628031 (M408V, 1222A>G) and rs622342 (1386C>A) frequency distributions in the South Indian Tamilian population.

MATERIALS AND METHODS:

A total of 112 unrelated healthy subjects of South Indian Tamilian origin, aged 18–60 years, of either sex were recruited for the study. Genotyping was determined using the quantitative real time-polymerase chain reaction and polymerase chain reaction followed by restriction fragment length polymorphism methods.

RESULTS:

Allele frequencies of rs2282143, rs628031and rs622342 polymorphisms were 8.9%, 80.3% and 24.5%, respectively. Interethnic differences in the genotype and allele frequencies of OCT1 gene polymorphism were observed when compared with other major populations. The SNPs rs2282143, T allele and rs628031, G allele were more common in Asians (5.5–16.8% and 76.2–81%) and African Americans (8.2% and 73.5%) than in Caucasians (0–2% and 57.4–60%).

CONCLUSION:

This is the first time the frequency of OCT1 gene polymorphism was determined in the Indian population, and is similar to the frequencies observed in African-Americans and other Asian populations but different from those in Caucasians. The data observed in this study would justify further pharmacogenetic studies to potentially evaluate the role of OCT1 gene polymorphism in the therapeutic efficacy of metformin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号