首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

2.
3.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

4.
Fidelity of DNA synthesis, catalyzed by DNA polymerases, is critical for the maintenance of the integrity of the genome. Mutant polymerases with elevated accuracy (antimutators) have been observed, but these mainly involve increased exonuclease proofreading or large decreases in polymerase activity. We have determined the tolerance of DNA polymerase for amino acid substitutions in the active site and in different segments of E. coli DNA polymerase I and have determined the effects of these substitutions on the fidelity of DNA synthesis. We established a DNA polymerase I mutant library, with random substitutions throughout the polymerase domain. This random library was first selected for activity. The essentiality of DNA polymerases and their sequence and structural conservation suggests that few amino acid substitutions would be tolerated. However, we report that two-thirds of single base substitutions were tolerated without loss of activity, and plasticity often occurs at evolutionarily conserved regions. We screened 408 members of the active library for alterations in fidelity of DNA synthesis in Escherichia coli expressing the mutant polymerases and carrying a second plasmid containing a beta-lactamase reporter. Mutation frequencies varied from 1/1000- to 1000-fold greater compared with wild type. Mutations that produced an antimutator phenotype were distributed throughout the polymerase domain, with 12% clustered in the M-helix. We confirmed that a single mutation in this segment results in increased base discrimination. Thus, this work identifies the M-helix as a determinant of fidelity and suggests that polymerases can tolerate many substitutions that alter fidelity without incurring major changes in activity.  相似文献   

5.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

6.
Bacteriophage T4 gene 43 codes for the viral DNA polymerase. We report here the sequence of gene 43 and about 70 nucleotides of 5'- and 3'-flanking sequences, determined by both DNA and RNA sequencing. We have also purified T4 DNA polymerase from T4 infected Escherichia coli and from E. coli containing a gene 43 overexpression vector. A major portion of the deduced amino acid sequence has been verified by peptide mapping and sequencing of the purified DNA polymerase. All these results are consistent with T4 DNA polymerase having 898 amino acids with a calculated Mr = 103,572. Comparison of the primary structure of T4 DNA polymerase with the sequence of other procaryotic and eucaryotic DNA polymerases indicates that T4 DNA polymerase has regions of striking similarity with animal virus DNA polymerases and human DNA polymerase alpha. Surprisingly, T4 DNA polymerase shares only limited similarity with E. coli polymerase I and no detectable similarity with T7 DNA polymerase. Based on the location of specific mutations in T4 DNA polymerase and the conservation of particular sequences in T4 and eucaryotic DNA polymerases, we propose that the NH2-terminal half of T4 DNA polymerase forms a domain that carries out the 3'----5' exonuclease activity whereas the COOH-terminal half of the polypeptide contains the dNTP-binding site and is necessary for DNA synthesis.  相似文献   

7.
We have purified three chromatographically distinct human enzyme activities from HeLa cells, that are capable of converting bleomycin-treated DNA into a substrate for E. coli DNA polymerase I. The bleomycin-treated DNA substrate used in this study has been characterized via a 32P-postlabeling assay and shown to contain strand breaks with 3'-phosphoglycolate termini as greater than 95% of the detectable dose-dependent lesions. The purified HeLa cell enzymes were shown to be capable of removing 3'-phosphoglycolates from this substrate. Also 3'-phosphoglycolate removal and nucleotide incorporation were enzyme dependent. In addition, all three Hela cell enzymes have been determined to possess Class II AP endonuclease activity. The enzymes lack 3'----5' exonuclease activity and are, therefore, dissimilar to exonuclease III--an E. coli enzyme that can remove 3'-phosphoglycolate.  相似文献   

8.
9.
The effect of pyrophosphate on the fidelity of in vitro DNA synthesis has been examined. Pyrophosphate enhances misincorporation by Escherichia coli DNA polymerase I in copying phi X174 DNA. The increased misincorporation is directly proportional to the extent of inhibition of the rate of polymerization. In contrast, pyrophosphate is not detectably mutagenic with avian myeloblastosis virus DNA polymerase or DNA polymerases alpha and beta from animal cells, which lack associated proofreading activities. This suggests that increased misincorporation by pyrophosphate is not due to an increase in misinsertions by DNA polymerase, but rather due to inhibition of proofreading by pyrophosphate. However, the pyrophosphate-induced infidelity has a different specificity from, and is not competitive with, two experimental markers of 3'----5' exonuclease proofreading; i.e. the effects of the next nucleotide or the addition of deoxynucleoside monophosphates. These distinctive features suggest a second mode of proofreading susceptible to inhibition by pyrophosphate. This concept is discussed in relation to models for proofreading described in the literature.  相似文献   

10.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

11.
Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3'→5' exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4-5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.  相似文献   

12.
T A Kunkel  R M Schaaper  L A Loeb 《Biochemistry》1983,22(10):2378-2384
Removal of purine bases from phi X174 single-stranded DNA leads to increased reversion frequency of amber mutations when this DNA is copied in vitro with purified DNA polymerases. This depurination-induced mutagenesis is observed at three different genetic loci and with several different purified enzymes, including Escherichia coli DNA polymerases I and III, avian myeloblastosis virus DNA polymerase, and eukaryotic DNA polymerases alpha, beta, and gamma. The extent of mutagenesis correlates with the estimated frequency of bypass of the lesion and is greatest with inherently inaccurate DNA polymerases which lack proofreading capacity. With E. coli DNA polymerase I, conditions which diminish proofreading result in a 3-5-fold increase in depurination-induced mutagenesis, suggesting a role for proofreading in determining the frequency of bypass of apurinic sites. The addition of E. coli single-stranded DNA-binding protein to polymerase I catalyzed reactions with depurinated DNA had no effect on the extent of mutagenesis. Analysis of wild-type revertants produced during in vitro DNA synthesis by polymerase I or avian myeloblastosis virus DNA polymerase on depurinated phi X174 amber 3 DNA indicates a preference for insertion of dAMP opposite the putative apurinic site at position 587. These results are discussed in relation both to the mutagenic potential of apurinic sites in higher organisms and to studies on error-prone DNA synthesis.  相似文献   

13.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

14.
This paper summarizes recent advances in understanding the links between the cell's ability to maintain integrity of its mitochondrial genome and mitochondrial genetic diseases. Human mitochondrial DNA is replicated by the two-subunit DNA polymerase gamma (polgamma). We investigated the fidelity of DNA replication by polgamma with and without exonucleolytic proofreading and its p55 accessory subunit. Polgamma has high base substitution fidelity due to efficient base selection and exonucleolytic proofreading, but low frameshift fidelity when copying homopolymeric sequences longer than four nucleotides. Progressive external ophthalmoplegia (PEO) is a rare disease characterized by the accumulation of large deletions in mitochondrial DNA. Recently, several mutations in the polymerase and exonuclease domains of the human polgamma have been shown to be associated with PEO. We are analyzing the effect of these mutations on the human polgamma enzyme. In particular, three autosomal dominant mutations alter amino acids located within polymerase motif B of polgamma. These residues are highly conserved among family A DNA polymerases, which include T7 DNA polymerase and E.coli pol I. These PEO mutations have been generated in polgamma to analyze their effects on overall polymerase function as well as the effects on the fidelity of DNA synthesis. One mutation in particular, Y955C, was found in several families throughout Europe, including one Belgian family and five unrelated Italian families. The Y955C mutant polgamma retains a wild-type catalytic rate but suffers a 45-fold decrease in apparent binding affinity for the incoming dNTP. The Y955C derivative is also much less accurate than is wild-type polgamma, with error rates for certain mismatches elevated by 10- to 100-fold. The error prone DNA synthesis observed for the Y955C polgamma is consistent with the accumulation of mtDNA mutations in patients with PEO. The effects of other polgamma mutations associated with PEO are discussed.  相似文献   

15.
We demonstrate that the DNA polymerase isolated from Thermococcus litoralis (VentTM DNA polymerase) is the first thermostable DNA polymerase reported having a 3'----5' proofreading exonuclease activity. This facilitates a highly accurate DNA synthesis in vitro by the polymerase. Mutational frequencies observed in the base substitution fidelity assays were in the range of 30 x 10(-6). These values were 5-10 times lower compared to other thermostable DNA polymerases lacking the proofreading activity. All classes of DNA polymerase errors (transitions, transversions, frameshift mutations) were assayed using the forward mutational assay (1). The mutation frequencies of Thermococcus litoralis DNA polymerase varied between 15-35 x 10(-4) being 2-4 times lower than the respective values obtained using enzymes without proofreading activity. We also noticed that the fidelity of the DNA polymerase from Thermococcus litoralis responds to changes in dNTP concentration, units of enzyme used per one reaction and the concentration of MgSO4 relative to the total concentration of dNTPs present in the reaction. The high fidelity DNA synthesis in vitro by Thermococcus litoralis DNA polymerase provides good possibilities for maintaining the genetic information of original target DNA sequences intact in the DNA amplification applications.  相似文献   

16.
Studies in eucaryotic cells (mainly animals and yeast) indicate that at least two DNA polymerases are involved in DNA replication at the level of the replication fork: DNA polymerase alpha, which is associated with DNA primase, is involved in the replication of the lagging strand; DNA polymerase delta, associated with an exonuclease activity, synthesizes the forward continuous DNA strand. Much less information exists concerning plant systems. Previous work from this laboratory provided preliminary evidence of an association between DNA polymerase B from wheat embryo and an exonucleolytic activity. In this paper, we present additional data on the biochemical properties of DNA polymerase B. An improved purification procedure described in this article has been developed. During all the purification steps the nuclease activity was associated with DNA polymerase activity. A biochemical study of this enzyme activity shows that it is an exonuclease which hydrolyses DNA in the 3' to 5' direction. Moreover, this exonuclease confers a proofreading function to DNA polymerase B. Comparison of DNA polymerase B properties (template specificity, sensitivity to DNA replication inhibitors like aphidicolin and butyl-phenyl dGTP, copurification of DNA polymerase and exonuclease activities) with those of animal DNA polymerase delta indicates that these enzymes share many common features. To our knowledge, this is the first report of DNA polymerase delta in higher plants.  相似文献   

17.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

18.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

19.
DNA exonucleases are critical for DNA replication, repair, and recombination. In the bacterium Escherichia coli there are 14 DNA exonucleases including exonucleases I-IX (including the two DNA polymerase I exonucleases), RecJ exonuclease, SbcCD exonuclease, RNase T, and the exonuclease domains of DNA polymerase II and III. Here we report the discovery and characterization of a new E. coli exonuclease, exonuclease X. Exonuclease X is a member of a superfamily of proteins that have homology to the 3'-5' exonuclease proofreading subunit (DnaQ) of E. coli DNA polymerase III. We have engineered and purified a (His)(6)-exonuclease X fusion protein and characterized its activity. Exonuclease X is a potent distributive exonuclease, capable of degrading both single-stranded and duplex DNA with 3'-5' polarity. Its high affinity for single-strand DNA and its rapid catalytic rate are similar to the processive exonucleases RecJ and exonuclease I. Deletion of the exoX gene exacerbated the UV sensitivity of a strain lacking RecJ, exonuclease I, and exonuclease VII. When overexpressed, exonuclease X is capable of substituting for exonuclease I in UV repair. As we have proposed for the other single-strand DNA exonucleases, exonuclease X may facilitate recombinational repair by pre-synaptic and/or post-synaptic DNA degradation.  相似文献   

20.
Eckert KA  Opresko PL 《Mutation research》1999,424(1-2):221-236
DNA polymerases differentiate between correct and incorrect substrates during synthesis on undamaged DNA templates through the biochemical steps of base incorporation, primer-template extension and proofreading excision. Recent research examining DNA polymerase processing of abasic, alkylation and oxidative lesions is reviewed in light of these discrimination mechanisms. Inhibition of DNA synthesis results from correct polymerase discrimination against utilization of geometrically incorrect template bases or 3' terminal basepairs. The efficiency of translesion synthesis is thus related to the physical structure of the lesion containing DNA. However, variations in enzyme structure and kinetics result in translesion synthesis efficiencies that are also dependent upon the DNA polymerase. With a low probability, polymerase misinsertion events create a 3' lesion terminus which is geometrically favored over the correct lesion basepair, resulting in mutagenic translesion synthesis. For example, both polymerase alpha and polymerase beta appear to require the formation of a stable 3' primer-template structure for efficient abasic site translesion synthesis. However, the enzymes differ as to the precise molecular make-up of the stable DNA structure, resulting in different mutational specificities. Similar mechanisms may be applicable to oxidative damage, where mutational specificities dependent upon the DNA polymerase also have been observed. In vitro reaction conditions also influence DNA polymerase processing of lesions. Using an in vitro herpes simplex virus thymidine kinase (HSV-tk) gene forward mutation assay, we demonstrate that high dNTP substrate concentrations affect the mutagenic specificity of translesion synthesis using alkylated templates. The exonuclease-deficient Klenow polymerase error frequency for G-->A transition mutations using templates modified by N-ethyl-N-nitrosourea (ENU) was four-fold higher at 1000 microM [dNTP], relative to 50 microM [dNTP], consistent with an increased efficiency of extension of the etO6G.T mispair. Moreover, the frequency of other ENU-induced polymerase errors was suppressed when polymerase reactions contained 50 microM dNTP, relative to 1000 microM dNTP. The efficiency of proofreading as a polymerase error discrimination mechanism reflects a balance between the competing processes of 3'-->5' exonuclease removal of mispairs and polymerization of the next correct nucleotide. Polymerases that are devoid of a proofreading exonuclease generally display enhanced abasic site translesion synthesis relative to proofreading-proficient enzymes. In addition, the proofreading exonucleases of Escherichia coli Pol I and T4 DNA polymerases have been found to remove mispairs caused by abasic sites and oxidative lesions, respectively, resulting in lowered polymerase error rates. However, the magnitude of the exonuclease effect is small (less than 10-fold), and highly dependent upon the DNA polymerase-exonuclease. We have studied proofreading exonuclease removal of alkylation damage in the HSV-tk forward assay. We observed no significant reduction in the magnitude of the mutant frequency vs. dose-response curves when N-methyl-N-nitrosourea or ENU-treated templates were used in exonuclease-proficient Klenow polymerase reactions, as compared to the exonuclease-deficient polymerase reactions. Thus, available data suggest that proofreading excision of endogenous lesion mispairs does occur, but the efficiency is dependent upon the lesion and the DNA polymerase-exonuclease studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号