首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
秦秋菊  李莎  毛达  李娜  李梦杰  刘顺 《生态学报》2016,36(7):1890-1897
植物花外蜜的分泌是一种植物间接防御反应。为了明确植食性昆虫、机械伤和机械伤诱导的挥发性气体在植物花外蜜诱导分泌中的作用,分析了咀嚼式口器昆虫棉铃虫Helicoverpa armigera(Hübner)、刺吸式口器昆虫棉蚜Aphis gossypii Glover取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物、针刺机械伤以及机械伤诱导挥发物、顺式-茉莉酮对棉花Gossypium hirsutum L.叶片花外蜜分泌量的影响。结果表明,棉铃虫取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物处理均显著增加了被处理叶片花外蜜的分泌量。棉花花外蜜的诱导效应在处理叶片上表现明显,并且在较幼嫩的第3片真叶上也有系统性增长。顺式-茉莉酮和机械伤挥发物处理1 d对棉花较幼嫩的第4、5片真叶花外蜜有诱导效应。棉花叶片花外蜜的诱导主要与植物组织损伤有关;不同口器类型的昆虫对棉花叶片花外蜜的诱导量不同,咀嚼式口器的棉铃虫对棉花花外蜜的诱导强度显著高于刺吸式口器的棉蚜;顺式-茉莉酮和机械伤诱导的挥发物能作为棉花植株间交流的信息物质诱导棉花幼嫩叶片花外蜜的分泌。  相似文献   

2.
3.
Field experiments on Leea glabra in its natural forest habitat of southern Yunnan, China were conducted to study the effects of artificial damage of young and old leaves on extrafloral nectaries (EFNs) secretion quantity and sugar concentration, as well as the effects on ant abundance on the plants following the damage treatments. We found there were no rapid changes in extrafloral nectar volume or nectar sugar concentration which would indicate an induced reaction following artificial damage. However, both cutting and punching of young leaves resulted in a significant increase (2–4-fold) of ants within 6 h after damage compared to undamaged controls. In another experiment, disks of fresh young L. glabra leaves that were pinned on young leaves of another L.glabra plant also resulted in a significant increase in the number of ants compared to treatment with paper disks, indicating that ants were most probably attracted by volatile organic compounds (VOCs) released from damaged young leaves. Furthermore, we found that portion of damaged leaf area of young leaves was significantly lower than that of old leaves and the concentration of tannins was significantly higher in young than in medium and old leaves. In conclusion, our results show that young leaves of L. glabra are protected against attacks by herbivores by multiple mechanisms, which include: (1) the activity of EFNs, which attract different ant species from the surrounding ground; (2) a mechanism induced by the damage of young leaves, which leads to rapidly increased ant recruitment and is most probably caused by the release of volatiles from damaged leaf and (3) a higher allocation of tannins in young than in older leaves.  相似文献   

4.
Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.  相似文献   

5.
Secondary tumours were formed on the cotyledonary leaf petiole,the hypocotyl, and first true leaf of castor bean seedlingsafter inoculating the blades of the cotyledonary leaves withAgrobacterium tumefaciens. Depending on the strain of bacteriaemployed, 0 to 80 per cent of the plants developed secondarytumours. The ability of different strains to initiate secondarytumours was not obviously correlated with their relative effectivenessin initiating primary tumours. Though all produced primary tumours,five out of ten auxotrophic strains failed to yield secondarytumours, whereas only one out of 14 prototrophic strains failedto do so. Both the number of plants developing secondary tumoursand the frequency with which these tumours occurred on differentparts of the plant were positively correlated with the concentrationof the primary inoculum. Tumours also developed on the cotyledonaryleaf petiole and on the hypocotyl after vacuum infiltrationof A. tumefaciens into the blade of cotyledonary leaves. Inmost instances (9 out of 11 plants) no tumours were formed onthe blade of the infiltrated leaf. Thus, tumour formation equivalentto secondary tumours can occur in the absence of a primary tumouror an overt primary wound. Excision of inoculated leaves showedthat the stimulus for secondary tumour formation moves fromthe blade to the hypocotyl within 24 h. Attempts to demonstratethe presence of a sub-cellular tumour-initiating agent in homogenatesof inoculated leaves were unsuccessful. A. tumefaciens, however,was found in the petiole of the cotyledonary leaf and in thehypocotyl within 24 h of inoculation. The migrating agent responsiblefor secondary tumour formation in castor beans is concludedto be intact bacteria.  相似文献   

6.
ALLSOPP  A. 《Annals of botany》1953,17(1):37-56
It is shown that in plants of Marsilea growing in aseptic culturereversion to juvenile leaves may be obtained by depriving thecultures of either sugar or mineral nutrients. Reduction toa protstele and other anatomical observations are also described. Juvenile leaves were produced by excised spices of mature plants,and by lateral branches developing on feeble decapitated plants.The problem of heteroblastic development is discused in relationto these and other observations.  相似文献   

7.
Broad bean (Vicia faba), an annual plant bearing extrafloral nectaries (EFN) at the base of the upper leaves, is regularly infested by two aphid species, Aphis fabae and Acyrthosiphon pisum. EFN and A. fabae are commonly attended by the ant, Lasius niger, while Ac. pisum usually remains uninfested. Sugar concentration and sugar composition of extrafloral nectar did not change significantly after aphid infestation. The sugar concentration was significantly higher in EFN (c. 271 µg µl-1) than in the honeydew of A. fabae (37.5 µg µl-1). The presence of small A. fabae colonies had no significant effect on ant attendance of EFN, which remained at the same level as that on plants without A. fabae. Obviously, there was no significant competitive effect between the two sugar sources. We suggest that the high sugar concentration in the extrafloral nectar may outweigh the higher quality (due to the presence of melezitose) and quantity of aphid honeydew. Ants and the presence of EFN influenced aphid colony growth. While A. fabae colonies generally grew better in the presence of ants, Ac. pisum colonies declined on plants with EFN or A. fabae colonies. We conclude that EFN may provide some degree of protection for V. faba against those sucking herbivores that are not able to attract ants.  相似文献   

8.
Background and Aims: Recent studies have shown that small structures on plant surfacesserve ecological functions such as resistance against herbivores.The morphology, distribution, chemical composition and changesduring shoot and leaf development of such small structures wereexamined on Paulownia tomentosa. Methods: The morphology and distribution of the structures were studiedunder light microscopy, and their chemical composition was analysedusing thin-layer chromatography and high-performance liquidchromatography. To further investigate the function of thesestructures, several simple field experiments and observationswere also conducted. Key Results: Three types of small structures on P. tomentosa were investigated:bowl-shaped organs, glandular hairs and dendritic trichomes.The bowl-shaped organs were densely aggregated on the leavesnear flower buds and were determined to be extrafloral nectarines(EFNs) that secrete sugar and attract ants. Nectar productionof these organs was increased by artificial damage to the leaves,suggesting an anti-herbivore function through symbiosis withants. Glandular hairs were found on the surfaces of young and/orreproductive organs. Glandular hairs on leaves, stems and flowerssecreted mucilage containing glycerides and trapped small insects.Secretions from glandular hairs on flowers and immature fruitscontained flavonoids, which may provide protection against someherbivores. Yellow dendritic trichomes on the adaxial side ofleaves also contained flavonoids identical to those secretedby the glandular hairs on fruits and flowers. Three specialtypes of leaves, which differed from the standard leaves inshape, size and identity of small structures, developed nearyoung shoot tips or young flower buds. The density of smallstructures on these leaf types was higher than on standard leaves,suggesting that these leaf types may be specialized to protectyoung leaves or reproductive organs. Changes in the small structuresduring leaf development suggested that leaves of P. tomentosaare primarily protected by glandular hairs and dendritic trichomesat young stages and by the EFNs at mature stages. Conclusions: The results indicate that P. tomentosa protects young and/orreproductive organs from herbivores through the distributionand allocation of small structures, the nature of which dependson the developmental stage of leaves and shoots.  相似文献   

9.
Parasitic wasps are prominent natural enemies of crop pests. They usually feed on floral resources during the adult stage (nectar, pollen, or honeydew). Extrafloral nectar is an alternative source of sugar easily accessible to adult parasitoids. We developed an original method of nectar labelling based on the injection of labelled sugar solution into the plant stem in order to analyse the nectar uptake by parasitoids (cotton wick method). This method was used to artificially enrich extrafloral cornflower, Centaurea cyanus L. (Asteraceae), nectar with the stable isotope 13C. We analysed (1) the transfer of 13C from the sugar solution into extrafloral nectaries, (2) the uptake of labelled nectar by parasitoids under laboratory conditions, and (3) the ability of the method to discriminate, in an oilseed rape (Brassica napus L., Brassicaceae) field, between labelled parasitoids (i.e., those who have fed on labelled cornflowers located adjacent to the field) and unlabelled parasitoids to track parasitoid movements from the margin into the field. The extrafloral nectar of all test plants was 13C‐labelled. Most (66%) of the parasitoids were identified as marked after 96 h of exposure to labelled plants in the laboratory. We could also detect labelled parasitoids inside the field, but the detection rate was only 1%. The experiments clearly demonstrate that the cotton wick method is appropriate to label extrafloral nectar and parasitoids feeding on this labelled nectar. Further research is needed on the amount of labelled extrafloral nectar required to obtain a sufficient marker level to track parasitoid movements in the field.  相似文献   

10.
The relationship between amino acid and sugar export to thephloem was studied in young wheat plants (Triticum aestivumL. ‘Pro-INTA, Isla Verde’) using the EDTA-phloemcollection technique. Plants grown with a 16 h photoperiod showeda rapid decrease in the concentration of sugars and amino acidsin the phloem exudate from the beginning of the dark period.When plants grown with a 16 h photoperiod were kept in the darkfor longer than 8 h the free amino acid content in leaves andexudate (on a dry weight basis) increased continually throughoutthe 72 h of darkness. During the first 24 h of darkness thesugars in the phloem exudate decreased to 30% of the initialvalue, and returned to the control level when plants were returnedto light. When plants grown under low light intensity for 10d were transferred to high light intensity, they showed an increasein leaf sugar content (dry weight basis) after 3 d but therewere no differences in leaf free amino acid content (dry weightbasis) compared to low-light plants. The sugar concentrationin the phloem exudate was increased by higher light intensities,but there was no difference in the amino acid concentrationof the phloem exudate, and thus the amino acid:sugar ratio inthe phloem decreased in the high-light plants. The present resultssuggest that amino acids can be exported to the phloem independentlyof the export of sugars. Copyright 1999 Annals of Botany Company Sugar exudation, amino acid transport, nitrogen, phloem, transport, wheat, Triticum aestivum L.  相似文献   

11.
Ness JH 《Oecologia》2003,134(2):210-218
Inducible anti-herbivore defenses are found within many plant taxa, but there are fewer examples of inducible indirect defenses that incorporate the third trophic level. This study links caterpillar foraging, herbivore-induced changes in extrafloral nectar production, and the attraction of ants to vulnerable leaves and plants. Catalpa bignonioides Walter (Bignoniaceae) uses extrafloral nectar to attract ant (Forelius pruinosus(Roger)) bodyguards in response to Ceratomia catalpae (Boisduval)(Lepidoptera: Sphingidae) herbivory. Ant density per leaf increased with the sugar content of extrafloral nectar excreted by sampled leaves, suggesting that increased nectar production could attract or retain beneficial arthropods. The masses of sucrose, fructose, glucose and all three sugars combined in the extrafloral nectar increased two- to three-fold on attacked leaves within 36 h of the experimental addition of caterpillars. Production rates for neighboring non-attacked leaves and non-attacked leaves on adjacent plants did not differ over the same time period. Ant attendance at caterpillar-attacked leaves increased two- to three-fold within 24 h of herbivory, relative to attendance at neighboring, undamaged leaves. These attacked leaves attracted the fewest ants prior to the onset of herbivory, suggesting the specialist caterpillar may avoid or be excluded from leaves with more bodyguards. The removal of leaf tissue with scissors did not alter ant attendance at damaged leaves. Mean ant attendance per leaf on attacked plants increased 6- to 10-fold after caterpillar introduction, relative to adjacent unattacked plants. The plant's biotic defense thus operates at two scales; the number of bodyguards (ant workers) on the plant increases after attack, and this increased workforce is biased towards attacked leaves within plants. Fewer caterpillars remained on plants that attracted greater numbers of ants, suggesting these bodyguards benefit the plant.  相似文献   

12.
Plants defend their leaves using multiple defense traits that change functions with leaf age. We examined the effects of leaf age on the development of multiple defense traits in two related Mallotus (Euphorbiaceae) species: young plants of the fast‐growing Mallotus japonicus (Spreng.) Müll. Arg. and the slow‐growing Mallotus philippensis (Lam.) Müll. Arg. Sequential leaves of the two species were measured for their leaf area, leaf mass/area, densities of trichomes and pellucid dots, extrafloral nectar volume, and the numbers of extrafloral nectaries and pearl bodies. Mallotus japonicus shifted its defense tactics from direct defense using trichomes and pellucid dots in young leaves to biotic defense using extrafloral nectar and pearl bodies in middle‐aged leaves. In contrast, M. philippensis used direct, chemical defense throughout all leaf ages, together with the shift from indirect, biotic defense using extrafloral nectar in young leaves to direct, physical defense using leaf toughness in middle‐aged leaves. These results strongly suggest that, in relation to life history, plants can alter optimal combinations of multiple defense traits with leaf age.  相似文献   

13.
MOORE  K. G. 《Annals of botany》1965,29(3):433-444
Data are recorded of the changes in chlorophylls, carotene,sugar, shikimic acid, and anthocyanin in leaves of sycamore(Acer pseudoplatanus L.) and Virginia creeper (Parthenocissustricuspidata Planch.) during leaf maturity and senescence. InParthenocissus the losses of chlorophylls, carotene, sugar,and shikimic acid during senescence were closely correlated,and were inversely related to the accumulation of anthocyanin.The losses of chlorophylls, carotene, and sugar by Acer leaveswere also closely correlated. No evidence was found to supportthe suggestion that anthocyanin formation was caused by accumulationof sugar during senescence, but marked differences in shikimicacid content were found between leaves of Acer, which did notform anthocyanin, and Parthenocissus. which did. It is suggestedthat autumn senescence of these leaves involves the rapid senescenceof an increasing proportion of the leaf tissue during a periodof 80 days, and that measurements of the content of constituentsgive an estimate of the proportion of the leaf tissue whichhas senesced.  相似文献   

14.
15.
To study the effect of removing tubers on growth and net assimilationrate (E) of potato, plants were grown in pots partly filledwith soil with the shoot growing through a polythene cover.Tubers developed in the space between the cover and the soilsurface. Removing tubers immediately they began to form had little effecton E at the beginning of the experiment but later greatly reducedit. Shading reduced E more at the beginning of the experimentthan later. Removing tubers decreased total dry weight, butmuch of the material that would have moved to tubers accumulatedin leaves and stems. In intact plants the loss of weight byshading was mainly from the tubers; in plants without tubersit was mainly from stems and leaves. Removing tubers increasedleaves on lateral stems. Increasing the amount of nitrogen supplieddiminished the effect on E of removing tubers, presumably becausethe extra allowed other sinks for carbohydrate to develop. Thegrowth of some buds of the potato plant is so strongly inhibitedthat they cannot grow and act as sinks for excess carbohydratewhen tubers are removed. Such internal inhibition of growthmay sometimes suffice to influence the magnitude of E of normalplants. Removing tubers usually increased sugar and starch contentand protein N content of stems and leaves.  相似文献   

16.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

17.
Extrafloral nectaries are secretory glands, usually found on leaves, that have been shown to promote ant defense against the insect herbivores of many modem day plants. Extrafloral nectaries were found on the 35-million-year-old fossil leaves of the extinct Populus crassa from Florissant, Colorado. Extinct ant species (belonging to five still extant genera that have modem ant-guard species), and other predators and parasitoids (whose modem relatives frequent extrafloral nectaries) also lived at Florissant. The extrafloral nectaries of P. crassa (and perhaps other plants) probably operated to attract ants and/or other arthropod defenders as early as the Oligocene.  相似文献   

18.
Nitrate reductase activity (in vivo method, substrate non-limiting)in unshaded leaves from the top of the canopy has been determinedfor field-grown potato plants over the course of the growingseason. The pattern of change was almost identical for plantsreceiving no added fertilizer and those receiving 24 g N m–2.Activity increased to a peak at about 90 days after plantingand declined thereafter. On a fresh weight basis activity wasalways higher in fertilized plants. Nitrate reductase activitywas positively and significantly correlated with leaf proteincontent in high N plants (r2 = 0.71; P = 0.05), but poorly correlatedwith both the nitrate content of the leaf lamina and the nitrateconcentration in petiole sap. Up until 90 days after planting(mid-July) there appeared to be a positive relationship betweenincreased activity of nitrate reductase and solar radiation.However, results obtained over two seasons showed that the declinein activity after this time was not consistently linked witha fall in the level of solar radiation. Remobilization of reduced-Nand stored nitrate from leaves and stems accompanied this declinein nitrate reductase activity and in the latter part of theseason appeared to account for all of the N gained by growingtubers. In unfertilized plants nitrate-N accounted for 5 per cent orless of total plant N. Fertilized plants contained up to 25per cent nitrate-N. While nitrate availability limited growthin unfertilized plants, sub-optimal rates of nitrate assimilationin fertilized plants, particularly during the early stages ofpost-emergence growth, may contribute to inefficient use ofacquired nitrate. The carbohydrate status of leaf lamina and petiole sap weremodified by N supply. The soluble sugar and starch contentsof low N leaves were higher than in their high N counterparts.By contrast, the concentration of soluble sugars in petiolesap increased to a higher value in high N samples. Althoughsap sugar levels declined in both treatments towards the endof the season, N application delayed this decline for severalweeks. Solanum tuberosum, nitrate reductase, nitrate assimilation, senescence  相似文献   

19.
Sugar-beet and barley were grown in pots outdoors (environmentN) and, for five successive 4-week periods starting at sowing,batches of plants were transferred to three growth rooms whosetemperatures were either similar to the outdoor mean (environmentM), or 3° C hotter (environment H) or 3° C colder (environmentC). Some plants were harvested immediately after treatment;others were returned to environment N and harvested when mature. At the end of period 1, sugar-beet plants from environment Mhad more dry weight and leaf area than those outdoors. Immediatelyafter spending later periods in environment M, plants had smallerleaves and similar dry weight to those continuously outdoors.These differences disappeared by maturity. Warmth in the growthrooms (i.e. the difference H—C) during periods 1, 2, and3, while leaf area was increasing, increased the number andsize of leaves and usually also dry weight; in later periodsit had no effect. The effects induced during periods 2 and 3,but not period 1, persisted to maturity to give greater totaland root dry weight and yield of sugar. The final effects ondry weight were much larger than those immediately after treatment,and were the result of differences in growth outdoors aftertreatment which depended on differences in leaf area; the efficiencyof the leaves was not affected by previous treatment. Transferring barley to environment M from N had inconsistentimmediate effects on leaf area and dry weight which disappearedby the final harvest. Transfer during periods 2 and 3, beforethe ears had started emerging, increased shoot number and delayeddevelopment. The proportion of the ears that ripened and theyield of grain were usually less for plants that had spent aperiod in environment M than for plants permanently outdoors,which also had some green ears. Warmth in the growth rooms duringperiods 1 and 2 increased dry weight and leaf area immediately,but had negligible effects at maturity because the increasesin leaf area did not persist after ear emergence. Warmth laterhastened death of leaves, decreased total dry weight immediatelyand also at maturity, but increased the proportion of ears thatripened and hence usually grain weight. Variation in leaf areaduration after ear emergence (D), determined by effects on thetime the ears emerged and the rate the leaves died, accountedfor most of the variation in grain yield, but warmth after theears emerged decreased grain yield less than proportionallyto the decrease in D. Net assimilation rate (E) of sugar-beet was greater than ofbarley, and decreased less with age. E of both species was usuallygreater in environment M than outdoors in spite of less radiation.It was only slightly affected by temperature. Nitrogen and potassium uptake were increased by treatments thatincreased dry weight. The percentage contents suggest that extrauptake was a consequence and not a cause of the increase indry weight.  相似文献   

20.
Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) is a polyphagous pest that threatens more than 24 species of crop plants including those used for biodiesel production such as Ricinus communis (castor bean), Jatropha curcas (Barbados nut), and Aleurites fordii (tung oil tree). The development and leaf consumption by S. cosmioides reared on leaves of these three species were studied under controlled laboratory conditions. The egg-to-adult development time of S. cosmioides was shortest when reared on castor bean leaves and longest when reared on tung oil tree leaves. Larvae reared on castor bean and Barbados nut leaves had seven instars, whereas those reared on tung oil tree leaves had eight. Females originating from larvae reared on castor bean and Barbados nut leaves showed greater fecundity than did females originating from larvae reared on tung oil tree leaves. Insects fed on castor bean leaves had shorter life spans than those fed on tung oil tree and Barbados nut leaves although the oviposition period did not differ significantly. The intrinsic and finite rates of increase were highest for females reared on castor bean leaves. Total leaf consumption was highest for larvae reared on tung oil tree leaves and lowest for those reared on Barbados nut leaves. We conclude that castor bean is a more appropriate host plant for the development of S. cosmioides than are Barbados nut and tung oil tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号