首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

2.
The role of gap junction membrane channels in development   总被引:11,自引:0,他引:11  
In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.  相似文献   

3.
Our previous studies showed an essential role for connexin 43 or alpha1 connexin (Cx43alpha1) gap junctions in the modulation of neural crest cell motility. Cx43alpha1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin is essential for gap junction mediated dye coupling but not for expression of Cx43alpha1 gap junctions in neural crest cells. Time lapse videomicroscopy and motion analysis showed that the motility of N-cadherin KO neural crest cells were altered, but the motility changes differed compared to Cx43alpha1 KO neural crest cells. These observations suggest that the role of N-cadherin in cell motility is not simply mediated via the modulation of Cx43alpha1 mediated cell-cell communication. This was confirmed by a parallel analysis of wnt-1 deficient neural crest cells, which also showed a reduction in dye coupling, and yet no change in cell motility. Analysis of p120 catenin (p120ctn), an Amardillo family protein known to play a role in cell motility, showed that it is colocalized with N-cadherin and Cx43alpha1 in migrating neural crest cells. This subcellular distribution was altered in the N-cadherin and Cx43alpha1 KO neural crest cells. Given these results, we propose that N-cadherin and Cx43alpha1 may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

4.
Gap junctions have been implicated in growth control, but it remains unclear whether cells that enter a quiescent state continue to express connexins and maintain a high level of gap junction intercellular communication (GJIC). To this end, MAC-T cells, a bovine mammary epithelial cell line, were serum starved for 48 h to induce a quiescent (G0) state. In quiescent cells, [3H]thymidine incorporation was reduced by 97.3% from serum-fed controls. Western blotting in conjunction with Phosphorlmager analysis revealed up to a 20-fold decrease in the expression of the gap junction protein connexin43 (Cx43 or alpha 1) and a shift toward the unphosphorylated form in quiescent cells. However, cell-to-cell transfer of the gap junction-permeable fluorescent tracer, Lucifer yellow, was only moderately reduced in quiescent cells. In control cells, Cx43 was predominantly perinuclear, although it was also present at sites of cell-cell apposition. In quiescent cells, intracellular labeling for Cx43 decreased without a corresponding reduction at areas of cell-cell contact. Recovery from serum deprivation resulted in increased thymidine incorporation that corresponded with an elevation in Cx43 protein expression and phosphorylation. In parallel studies, MAC-T cells were also induced to enter a quiescent state through contact inhibition. Despite a 20-fold reduction in 5-bromo-2'-deoxyuridine and a substantial reduction in intracellular Cx43, contact inhibited MAC-T cells also maintained gap junctions and GJIC. These experiments demonstrate that the maintenance of dye coupling in quiescent mammary cells is correlated with a redistribution of intracellular stores of Cx43.  相似文献   

5.
Our previous studies showed an essential role for connexin 43 or α1 connexin (Cx43α1) gap junctions in the modulation of neural crest cell motility. Cx43α1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin is essential for gap junction mediated dye coupling but not for expression of Cx43α1 gap junctions in neural crest cells. Time lapse videomicroscopy and motion analysis showed that the motility of N-cadherin KO neural crest cells were altered, but the motility changes differed compared to Cx43α1 KO neural crest cells. These observations suggest that the role of N-cadherin in cell motility is not simply mediated via the modulation of Cx43α1 mediated cell-cell communication. This was confirmed by a parallel analysis of wnt-1 deficient neural crest cells, which also showed a reduction in dye coupling, and yet no change in cell motility. Analysis of p 120 catenin (p 120ctn), an Amardillo family protein known to play a role in cell motility, showed that it is colocalized with N-cadherin and Cx43α1 in migrating neural crest cells. This subcellular distribution was altered in the N-cadherin and Cx43α1 KO neural crest cells. Given these results, we propose that N-cadherin and Cx43α1 may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

6.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine “normal” cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

7.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine "normal" cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

8.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of α-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

9.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of alpha-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

10.
Bone cells form a functional syncytium as they are coupled by gap junctions composed mainly of connexin 43 (Cx43). To further understand the role of Cx43 in bone cell growth and differentiation, we stably transfected Cx45-expressing UMR 106-01 cells with Cx43 using an expression vector containing rat Cx43 cDNA. Three stably transfected clones were analyzed, all of which showed altered expression of Cx43 and/or Cx45 as was obvious from immunocytochemistry and Northern blotting. Double whole-cell patch clamping revealed single-channel conductances of 20 (Cx45) and 60 pS (Cx43). The overexpression of Cx43 led to an increase in dye coupling concomitant with elevated gap-junctional conductance. The phenotype of the transfected clones was characterized by an increased proliferation (4- to 7-fold) compared to controls. Moreover, a transfectant clone with 10- to 12-fold enhanced Cx43 expression showed a significantly increased calcium content of the extracellular matrix and enlarged mineralization nodules, while alkaline phosphatase was moderately increased. We conclude that enhanced gap-junctional coupling via Cx43 significantly promotes proliferation and differentiation of UMR cells.  相似文献   

11.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

12.
Gap junctional communication is involved in embryogenesis, cell growth control, and coordinated contraction of cardiac myocytes. It has been hypothesized that gap junctions coordinate responses of vascular cells to constrictor or dilator stimulation. Three connexin (Cx) proteins, 37, 40, and 43, are found in the vasculature. Cx43 gap junctions are widely distributed along the vascular tree, although a precise physiologic role in vascular function is unknown because of a lack of specific functional inhibitors and of suitable animal models. To investigate the role of Cx43 in intercellular communication among vascular smooth muscle (VSM) cells, we selectively modified the expression of the Cx43 gene using antisense cDNA stable transfections in culture. Results show that in cells stably transfected with antisense Cx43 cDNA, gene expression of Cx43 could be reduced to 20% of that observed in vector-transfected cells. In spite of the mRNA and protein reduction, the antisense Cx43 cDNA-transfected cells did not show a significant reduction in dye transfer or a difference in cell growth rate as compared with control. These results suggest either that the residual amount of Cx43 protein is sufficient for dye transfer and growth control or that the dye transfer in these cells can be mediated by Cx40 or other connexin proteins. Therefore, more potent approaches, such as dominant negative and gene knockout, are required to fully block gap junctional communication in VSM cells.  相似文献   

13.
Previously we have shown that during in vivo muscle regeneration differentiating rat primary myoblasts transiently upregulate connexin43 (Cx43) gap junctions and leave cell cycle synchronously. Here, we studied the temporal regulation of Cx expression in relation to functional dye coupling in allogenic primary myoblast cultures using western blotting, immuno-confocal microscopy and dye transfer assays. As in vivo, Cx43 was the only Cx isotype out of Cx26, 32, 37, 40, 43 and 45 found in cultured rat myoblasts by immunostaining. Cultured myoblasts showed similar temporal regulation of Cx43 expression and phenotypic maturation to those regenerating in vivo. Cx43 protein was progressively upregulated in prefusion myoblasts, first by the cytoplasmic assembly in sparse myoblast meshworks and then in cell membrane particles in aligned cells. Dye injection using either Lucifer Yellow alone, Cascade Blue with a non-junction permeant FITC-dextran revealed an extensive gap junction coupling between the sparse interacting myoblasts and a reduced communication between the aligned, but still prefused cells. The aligned myoblasts, uniformly upregulate p21waf1/cip1 and p27kip1 cell cycle control proteins. Taken together, in prefusion myoblasts less membrane-bound Cx43 was found to mediate substantially more efficient dye coupling in the growing cell fraction than those in the aligned post-mitotic myoblasts. These and our in vivo results in early muscle differentiation are consistent with the role of Cx43 gap junctions in synchronizing cell cycle control of myoblasts to make them competent for a coordinated syncytial fusion.  相似文献   

14.
Communication through gap junctions was first suggested to have a role in the social control of cell growth over 30 years ago. However, despite extensive experimentation, the importance of gap junctions as a general mechanism of growth control remains to be established. A number of different studies have shown that a common early response of cells in culture to polypeptide growth factors such as PDGF is a rapid and transient inhibition of cell communication suggesting that a cell may have to lose communication with its neighbors before it can undergo cell division. Here we show that 3T3 A31 fibroblasts exposed to PDGF exhibit a 50% decrease in cell communication as measured by dye transfer in the absence of significant changes in the cellular content and distribution of Cx43. Likewise, PDGF inhibited cell communication in cells transfected either with a vector which did not contain a cDNA or with an expression vector encoding full-length Cx43 fused to a c-myc tag (Cx43-M). In contrast, 3T3 A31 fibroblasts transfected with an expression construct encoding a deletion mutant of Cx43 (Cx43-256M) consisting of amino acids 1-256 of Cx43 fused to a c-myc tag maintain high levels of gap junction activity following exposure to PDGF. These results suggest that sites which trigger loss of cell communication in response to PDGF are located within amino acids 257 to 382 of the Cx43 molecule. Cells transfected with an expression vector encoding full-length Cx43 fused to a c-myc tail exhibited a reduced basal growth rate compared to both parent cells and cells transfected with a control vector but maintained a strong mitogenic response to PDGF. In contrast, both the basal growth rate and the mitogenic response to PDGF was markedly reduced in cells which expressed Cx43-256M consistent with the hypothesis that loss of cell communication is required before a cell can respond to mitogenic stimuli.  相似文献   

15.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties.  相似文献   

16.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

17.
《The Journal of cell biology》1995,131(6):1561-1572
To assess whether connexin (Cx) expression contributes to insulin secretion, we have investigated normal and tumoral insulin-producing cells for connexins, gap junctions, and coupling. We have found that the glucose-sensitive cells of pancreatic islets and of a rat insulinoma are functionally coupled by gap junctions made of Cx43. In contrast, cells of several lines secreting insulin abnormally do not express Cx43, gap junctions, and coupling. After correction of these defects by stable transfection of Cx43 cDNA, cells expressing modest levels of Cx43 and coupling, as observed in native beta-cells, showed an expression of the insulin gene and an insulin content that were markedly elevated, compared with those observed in both wild-type (uncoupled) cells and in transfected cells overexpressing Cx43. These findings indicate that adequate levels of Cx-mediated coupling are required for proper insulin production and storage.  相似文献   

18.
To study the aggregation of cell-to-cell channels into gap junctions at individual cell-cell contacts, we transfected cells with an expression vector for a chimeric protein composed of the cell-to-cell channel protein connexin43 and a green fluorescent protein. The chimeric channel protein was visualized in the fluorescence microscope and was found to form gap junctions at the cell-cell contacts just like wild-type connexin43. Cells expressing the chimeric protein had functional cell-to-cell channels. Using timelapse videomicroscopy on live cells we observed individual gap junctions over long periods and recorded the time course of aggregation of the chimeric channel protein into gap junctions at newly formed cell-cell contacts. We found that individual small gap junctions were very dynamic, moving about or becoming assembled and disassembled in the course of minutes. Larger gap junctions were more stable than small punctate ones. In control condition, stable new gap junctions were not formed during observation times of 30 min or longer. But at elevated levels of cyclic adenosine monophosphate, the chimeric channel protein began aggregating at new junctions 5-10 minutes after cell-cell contact and continued to concentrate there for at least one hour. Also already established junctions grew in size. The fluorescent chimeric channel protein will be an excellent tool to investigate the regulation of trafficking of connexin from and to the membrane and the mechanism of connexin channel aggregation into gap junctions.  相似文献   

19.
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involved are unknown. Chloral hydrate (CH), a by-product of chlorine disinfection of water, is carcinogenic in mice, and we demonstrated that CH reduced GJC in a rat liver epithelial cell line (Clone 9). To examine the mechanism(s) by which CH inhibits GJC, Clone 9 cells treated with CH were examined using Western blot, real-time polymerase chain reaction, immunocytochemical, and dye-communication techniques. Treatment with CH (0.1–5 mM for 24 h) resulted in a dose-dependent inhibition of GJC as measured by Lucifer yellow dye transfer. Western blot analysis demonstrated expression of connexin (Cx) 43 and 26 in control cells and reduced expression of Cx 43 but not Cx 26 protein from 0.1 to 1 mM CH. CH treatment from 2.5 to 5 mM caused an apparent increase in expression of both connexins that was concomitant with a reduction in mRNA expression for both connexins. Similarly, with immunocytochemistry, a dose-dependent decrease in Cx 43 staining at sites of cell–cell contact was apparent in CH (0.5–5 mM)-treated cultures, whereas no Cx 26 staining was observed. Thus, Clone 9 cells contain two types of connexins but only one type of plasma membrane channel. Understanding of the regulation of connexin may shed light on mechanisms responsible for inhibition of GJC by chemical carcinogens.  相似文献   

20.
Connexins (Cx) 40 and 43 are coexpressed by several cell types at ratios that vary as a function of development, aging, and disease. Because these connexins form heteromeric channels, changes in expression ratio might be expected to significantly alter the connexin composition of the gap junction channel population and, therefore, gap junction function. To examine this possibility, we stably transfected A7r5 cells, which naturally coexpress Cx43 and Cx40, with a vector encoding antisense Cx43. Cx43 mRNA continued to be expressed in the antisense transfected clones, although levels were inversely related to the number of copies of antisense DNA incorporated into the genome. Protein levels, quantified in the clones with the highest and lowest Cx43:Cx40 mRNA ratios, were not well predicted by the mRNA levels, although the trends predicted by the Cx43:Cx40 mRNA ratio were preserved. Electrical coupling did not differ significantly between clones, but the clone with elevated Cx43:Cx40 protein expression ratio and unchanged Cx43 banding pattern was significantly better dye coupled than the parental A7r5 cells. These results suggest that as the Cx43:Cx40 ratio increases, provided alterations of Cx43 banding pattern (phosphorylation) have not occurred, permeability to large molecules increases even though electrical coupling remains nearly constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号