首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrin, a protein that mediates nerve-induced acetylcholine receptor (AChR) aggregation at developing neuromuscular junctions, has been shown to cause an increase in phosphorylation of the beta, gamma, and delta subunits of AChRs in cultured myotubes. As a step toward understanding the mechanism of agrin-induced AChR aggregation, we examined the effects of inhibitors of protein kinases on AChR aggregation and phosphorylation in chick myotubes in culture. Staurosporine, an antagonist of both protein serine and tyrosine kinases, blocked agrin-induced AChR aggregation in a dose-dependent manner; 50% inhibition occurred at approximately 2 nM. The extent of inhibition was independent of agrin concentration, suggesting an effect downstream of the interaction of agrin with its receptor. Staurosporine blocked agrin-induced phosphorylation of the AChR beta subunit, which occurs at least in part on tyrosine residues, but did not reduce phosphorylation of the gamma and delta subunits, which occurs on serine/threonine residues. Staurosporine also prevented the agrin- induced decrease in the rate at which AChRs are extracted from intact myotubes by mild detergents. H-7, an antagonist of protein serine kinases, inhibited agrin-induced phosphorylation of the gamma and delta subunits but did not block agrin-induced phosphorylation of the AChR beta subunit, AChR aggregation, or the decrease in AChR extractability. The results provide support for the hypothesis that tyrosine phosphorylation of the beta subunit plays a role in agrin-induced AChR aggregation.  相似文献   

2.
3.
The nicotinic acetylcholine receptor (AChR) of Torpedo electric organ and vertebrate skeletal muscle is closely associated with a Mr 43,000 protein (43K). In this study, we have examined the effects on the AChR of treatments which remove the 43K protein. We used semiquantitative fluorescence techniques to measure the binding of antibodies to clustered AChR in cultured rat myotubes. We found that labeling by antibodies to the cytoplasmic portions of each of the four receptor polypeptides increased significantly upon extraction of the 43K protein. Labeling by an antibody to an extracellular epitope of the alpha subunits was not affected by removal of the 43K protein, suggesting that changes were restricted to the cytoplasmic domains of the AChR. Increases in labeling by antibodies were more limited following protease treatment, which removes most cytoskeletal structures but leaves the 43K protein bound to the membrane. Competition between an antibody to the beta subunit and an antibody to the gamma and delta subunits suggests that the cytoplasmic portion of the AChR still retains a degree of native structure in the absence of the 43K protein. Our results suggest that, although some of these changes may be due to simply exposing additional epitopes on the AChR, the cytoplasmic portions of all the subunits of the AChR undergo significant conformational changes upon extraction of the 43K protein.  相似文献   

4.
On the phosphorylation of yeast RNA polymerases A and B   总被引:8,自引:0,他引:8  
In exponentially growing cells, RNA polymerase B is exclusively form BI enzyme with several phosphorylated subunits: B220, B23 and possibly B44.5. In RNA polymerase A an average of fifteen phosphate groups are distributed on the five phosphorylated subunits: A190 (6), A43 (4), A34.5 (2), A23 (1-2) and A19 (1-2). Phosphorylation of enzyme A by a yeast protein kinase in vitro adds less than 1 mol phosphate/mol enzyme but occurs essentially at the physiological sites, as shown by a comparison of the peptide patterns obtained by limited proteolysis of subunits 32P-labelled in vivo and in vitro. No evidence was found in favor of a modulation of RNA polymerase activity in vitro or in vivo via phosphorylation.  相似文献   

5.
6.
We have investigated the mechanisms regulating the clustering of nicotinic acetylcholine receptor (AChR) on the surface of cultured embryonic chick muscle cells. Treatment of these cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of protein kinase C, was found to cause a rapid dispersal of AChR clusters, as monitored by fluorescence microscopy of cells labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin. The loss of AChR clusters was not accompanied by an appreciable change in the amount of AChR on the surface of these cells, as measured by the specific binding of [125I]Bgt. Analysis of the phosphorylation pattern of immunoprecipitable AChR subunits showed that the gamma- and delta-subunits are phosphorylated by endogenous protein kinase activity in the intact muscle cells, and that the delta-subunit displays increased phosphorylation in response to TPA. Structural analogues of TPA which do not stimulate protein kinase C have no effect on AChR surface topography or phosphorylation. Exposure of chick myotubes to the cholinergic agonist carbamylcholine was found to cause a dispersal of AChR clusters with a time course similar to that of TPA. Like TPA, carbamylcholine enhances the phosphorylation of the delta-subunit of AChR. The carbamylcholine-induced redistribution and phosphorylation of AChR is blocked by the nicotinic AChR antagonist d-tubocurarine. TPA and carbamylcholine have no effect on cell morphology during the time-course of these experiments. These findings indicate that cell surface topography of AChR may be regulated by phosphorylation of its subunits and suggest a mechanism for dispersal of AChR clusters by agonist activation.  相似文献   

7.
Skeletal muscle dihydropyridine-sensitive calcium channels are in vitro substrates for cAMP-dependent protein kinase. In the present work, alpha 1 subunits were isolated from cultured skeletal muscle cells by immunoprecipitation with a specific monoclonal antibody under conditions where proteolysis and dephosphorylation were prevented. Two forms of alpha 1 subunit, 200 and 160 kDa, were identified by back phosphorylation in vitro with cAMP-dependent protein kinase, specific immunoprecipitation, and phosphopeptide mapping. Treatment of cells with forskolin, isoproterenol, calcitonin gene-related peptide, or 8-bromo-cAMP to increase intracellular cAMP reduced 32P incorporation into all phosphopeptides in vitro by 60-80% indicating that increases in cAMP caused endogenous phosphorylation of all sites on both alpha 1(200) and alpha 1(160) to nearly maximal levels. The extents of basal and stimulated phosphorylation in vivo were estimated by back phosphorylation methods to be 35-40% and 83-86%, respectively. In muscle cells metabolically labeled with 32P, 3 mol of phosphate were incorporated into alpha 1 subunits. Forskolin stimulated 32P incorporation into alpha 1 subunits 1.6-fold. Taken together, our results show that skeletal muscle cells contain two forms of the alpha 1 subunit which both are basally phosphorylated on cAMP-dependent phosphorylation sites and are further phosphorylated in response to agents that increase intracellular cAMP.  相似文献   

8.
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.  相似文献   

9.
The purpose of this investigation was to characterize the phosphorylation of bovine cardiac troponin by cyclic AMP-dependent protein kinase. The purified troponin-tropomyosin complex from beef heart contained 0.78 +/- 0.15 mol of phosphate per mol of protein. Analysis of the isolated protein components indicated that the endogenous phosphate was predominately in the inhibitory subunit (TN-I) and the tropomyosin-binding subunit (TN-T) of troponin. When cardiac troponin or the troponin-tropomyosin complex was incubated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP, the rate of phosphorylation was stimulated by cyclic AMP and inhibited by the heat-stable protein inhibitor of cyclic AMP-dependent protein kinase. The 32P was incorporated specifically into the TN-I subunit with a maximal incorporation of 1 mol of phosphate per mol of protein. The maximal amount of phosphate incorporated did not vary significantly between troponin preparations that contained low or high amounts of endogenous phosphate. The Vmax of the initial rates of phosphorylation with troponin or troponin-tropomyosin as substrates was 3.5-fold greater than the value obtained with unfractionated histones. The rate or extent of phosphorylation was not altered by actin in the presence or absence of Ca2+. The maximal rate of phosphorylation occurred between pH 8.5 and 9.0. At pH 6.0 and 7.0 the maximal rates of phosphorylation were 13 and 45% of that observed at pH 8.5, respectively. These results indicate that cyclic AMP formation in cardiac muscle may be associated with the rapid and specific phosphorylation of the TN-I subunit of troponin. The presence of endogenous phosphate in TN-T and TN-I suggests that kinases other than cyclic AMP-dependent protein kinase may also phosphorylate troponin in vivo.  相似文献   

10.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

11.
K Miles  P Greengard  R L Huganir 《Neuron》1989,2(5):1517-1524
The nicotinic acetylcholine receptor (AChR) is a substrate for at least three different protein kinases, and phosphorylation of the receptor has been shown to increase its rate of desensitization. However, the first messengers that regulate AChR phosphorylation have not yet been identified. This study demonstrates that calcitonin gene-related peptide (CGRP), a neuropeptide present in the axon terminals of the neuromuscular junction, regulates phosphorylation of the AChR in primary rat myotube cultures. CGRP, in the presence of the phosphodiesterase inhibitor Ro 20-1724, increased phosphorylation of the alpha and delta subunits of the AChR. CGRP-induced phosphorylation of the AChR had the same subunit specificity and temporal sequence as previously observed using forskolin or cAMP analogs. Phosphorylation of the AChR in the presence of CGRP appears to be mediated by CGRP-stimulated increases in cAMP levels leading to activation of cAMP-dependent protein kinase. The present results, taken together with the recent demonstration that CGRP increases the rate of AChR desensitization in mouse myotubes, suggest that CGRP may play a physiological role as a regulator of AChR desensitization by modulating AChR phosphorylation at the neuromuscular junction.  相似文献   

12.
We have synthesized a tetradecapeptide corresponding to residues 354-367 of the delta-subunit of Torpedo acetylcholine receptor. This peptide contains the sequence Arg-Arg-Ser-Ser which has been proposed as the site for phosphorylation of the acetylcholine receptor (AChR) by an endogenous cAMP-dependent protein kinase. We have shown that the synthetic peptide can be phosphorylated by the catalytic subunit of bovine heart cAMP-dependent protein kinase. Antibodies elicited against peptide 354-367 were shown to cross-react with native AChR and to bind specifically to the delta- and gamma-subunit as detected by immunoblotting. Furthermore, antipeptide antibodies were shown to inhibit specifically the cAMP-dependent phosphorylation of both the delta- and gamma-subunits. This suggests that the phosphorylation sites in the delta- and gamma-subunits are highly cross-reactive, and is in agreement with the demonstration that an endogenous cAMP-dependent kinase phosphorylates these two subunits, probably on homologous sequences. Tryptic digestion of the delta-subunit isolated from phosphorylated AChR yields a single 25-kd phosphorylated fragment. Immunoblotting experiments allowed us to map peptide 354-367 within this phosphorylated fragment.  相似文献   

13.
Ten protein kinases have been assayed for their ability to phosphorylate in vitro the recombinant bovine PrP (25-242) (rbPrP). Substantial phosphorylation was observed with PKC, CK2, and two tyrosine kinases, Lyn and c-Fgr. With regard to CK2, phosphorylation occurs at Ser 154 with a stoichiometry of about 0.1 mol phosphate/mol rbPrP, which is doubled by mild heat treatment of rbPrP. Heat also reduces the overall protein ellipticity, suggesting that reversibly unfolded conformers are more susceptible to phosphorylation. Our data disclose the possibility that phosphorylation might modulate PrP biological activity.  相似文献   

14.
Tubulin polymerization-promoting protein (TPPP), an unfolded brain-specific protein interacts with the tubulin/microtubule system in vitro and in vivo, and is enriched in human pathological brain inclusions. Here we show that TPPP induces tubulin self-assembly into intact frequently bundled microtubules, and that the phosphorylation of specific sites distinctly affects the function of TPPP. In vitro phosphorylation of wild type and the truncated form (Delta3-43TPPP) of human recombinant TPPP was performed by kinases involved in brain-specific processes. A stoichiometry of 2.9 +/- 0.3, 2.2 +/- 0.3, and 0.9 +/- 0.1 mol P/mol protein with ERK2, cyclin-dependent kinase 5 (Cdk5), and cAMP-dependent protein kinase (PKA), respectively, was revealed for the full-length protein, and 0.4-0.5 mol P/mol protein was detected with all three kinases when the N-terminal tail was deleted. The phosphorylation sites Thr(14), Ser(18), Ser(160) for Cdk5; Ser(18), Ser(160) for ERK2, and Ser(32) for PKA were identified by mass spectrometry. These sites were consistent with the bioinformatic predictions. The three N-terminal sites were also found to be phosphorylated in vivo in TPPP isolated from bovine brain. Affinity binding experiments provided evidence for the direct interaction between TPPP and ERK2. The phosphorylation of TPPP by ERK2 or Cdk5, but not by PKA, perturbed the structural alterations induced by the interaction between TPPP and tubulin without affecting the binding affinity (K(d) = 2.5-2.7 microM) or the stoichiometry (1 mol TPPP/mol tubulin) of the complex. The phosphorylation by ERK2 or Cdk5 resulted in the loss of microtubule-assembling activity of TPPP. The combination of our in vitro and in vivo data suggests that ERK2 can regulate TPPP activity via the phosphorylation of Thr(14) and/or Ser(18) in its unfolded N-terminal tail.  相似文献   

15.
We found a novel 81-kDa acidic protein (ACAMP-81) in the bovine brain membrane fraction, which bound to calmodulin in a Ca(2+)-dependent manner. The present study reveals physicochemical properties and phosphorylation of this protein with various protein kinases in vitro. The Stokes radius and sedimentation coefficient were calculated to be 52 A and 2.05 S, respectively, suggesting that the structure of ACAMP-81 is highly elongated. Purified Ca2+/phospholipid-dependent protein kinase (protein kinase C), cAMP-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) catalyzed the incorporation of 1.46, 0.72, and 0.44 mol of phosphate/mol of ACAMP-81, respectively. The amino acid residues of ACAMP-81 phosphorylated by either protein kinase C or cAMP-dependent protein kinase were almost exclusively on serine. Sequential phosphorylation of ACAMP-81 by cAMP-dependent protein kinase and protein kinase C resulted in the additional incorporation of 1.15 mol of [32P]phosphate into ACAMP-81. Comparison of phosphopeptide maps of ACAMP-81 phosphorylated by each kinase revealed that there are two classes of phosphorylatable polypeptide, one is phosphorylatable by both protein kinases which contained two polypeptides and the others are specific sites for protein kinase C.  相似文献   

16.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

17.
Homogeneous cGMP-dependent protein kinase catalyzes the rapid incorporation of phosphate, specifically into the inhibitory subunit of purified cardiac troponin with a maximal incorporation of 1 mol of phosphate/mol of troponin. When troponin was incubated in the presence of both cGMP- and cAMP-dependent protein kinases, a maximal incorporation of 1 mol of phosphate/mol of troponin was observed which suggested phosphorylation of the same site by the two kinases. Both cyclic nucleotide-dependent kinases had similar Km values for troponin, but the Vmax value for the phosphorylation reaction catalyzed by cAMP-dependent protein kinase was 12-fold greater than the value obtained for cGMP-dependent protein kinase.  相似文献   

18.
Phosphorylation of polyoma T antigens.   总被引:77,自引:0,他引:77  
The T antigens of polyoma virus have been examined for phosphorylation in vivo and associated protein kinase activities in vitro. The 100K "large" T antigen is the major phosphoprotein among the T antigen species in vivo as determined by labeling virus-infected cells with 32P-orthophosphate. Hr-t mutants show normal phosphorylation of their 100K T antigens. The wild-type 56K plasma membrane-associated "middle" T antigen is also phosphorylated in the cell, but to a lesser extent than the 100K; this low level phosphorylation is also observed in the presumably altered 56K protein induced by hr-t mutant NG59 and in the 50K truncated "middle" T of hr-t mutant SD15. Addition of dibutyryl cyclic AMP to the medium does not affect labeling of either large or middle T antigens in wild-type- or mutant-infected cells. Thus no differences are observed in T antigen phosphorylation in vivo between wild-type virus and hr-t mutants. Hr-t mutants are defective in a protein kinase activity assayed in vitro by adding gamma-32P-ATP to T antigen immunoprecipitates. In the case of wild-type virus, the 56K protein is the major phosphate acceptor in the in vitro kinase reaction, with a somewhat lower level of phosphorylation observed in the 100K band. Hr-t mutants NG59 and SD15 show no labeling of the altered 56K or 50K, respectively, but do show detectable levels of 32P in the 100K bands. A wild-type virus carrying a small deletion affecting the 100K and 56k bands shows a normal level of kinase activity associated with the truncated T antigens. Ts-a mutants appear to be normal with respect to the middle T antigen-associated kinase. Photoaffinity labeling of infected cell extracts with 8-azido cyclic AMP shows that the two major classes of regulatory subunits of cyclic AMP-dependent protein kinases are present in the immunoprecipitates. Phosphorylation of histone H1 occurs when this substrate is added to immunoprecipitates of either mock-infected or virus-infected cells, again demonstrating the presence of cellular kinases. Further experiments will be required to determine whether the middle T antigen of polyoma virus is itself a protein kinase or simply a substrate for one or more cellular kinases.  相似文献   

19.
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.  相似文献   

20.
Clustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans and syntrophins into a laminin-like network, whereas inducing AChR-containing clusters of dystrobrevin, utrophin, and, to a marginal degree, MuSK. Laminin-1 also caused extensive coclustering of rapsyn and phosphotyrosine with AChRs, but none of these clusters were observed in rapsyn -/- myotubes. In parallel with clustering, laminin-1 induced tyrosine phosphorylation of AChR beta and delta subunits. Staurosporine and herbimycin, inhibitors of tyrosine kinases, prevented laminin-induced AChR phosphorylation and AChR and phosphotyrosine clustering, and caused rapid dispersal of clusters previously induced by laminin-1. Finally, laminin-1 caused normal aggregation of AChRs and phosphotyrosine in myotubes lacking both Src and Fyn kinases, but these clusters dispersed rapidly after laminin withdrawal. Thus, laminin-1 redistributes postsynaptic proteins and, like agrin, requires tyrosine kinases for AChR phosphorylation and clustering, and rapsyn for AChR cluster formation, whereas cluster stabilization depends on Src and Fyn. Therefore, the laminin and agrin signaling pathways overlap intracellularly, which may be important for neuromuscular synapse formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号