首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contrary to several earlier reports, we find that cross-recombination between wild-type and the mutant loxP511 sites is <0.5% of that between two wild-type sites if Cre protein is expressed by phage P1 during an infection. The finding enabled us to develop a procedure to truncate DNA progressively from both ends of large genomic inserts flanked by these two loxP sites in pBACe3.6 and related vectors with transposons carrying either a wild-type or a loxP511 sequence. Newly constructed loxP511 transposons contained either a kanamycin resistance gene or no marker. Insert DNA ends in deletions were sequenced with primers unique to each transposon-end remaining after the respective recombination. End-sequencing 223 deletions confirmed that the low level of cross-recombination, observed between those sites during the P1 transductions, does not complicate the procedure: truncations from the unintended end of genomic inserts did not occur. Multiple BACs pooled together could also be processed in a single tube to make end-deletions. This deletion technology, utilizing the very minimal cross-recombination between the mutant and wild-type loxP sites of most BAC clones in the public domain and a heterologous one inserted as a transposon, should facilitate functionally mapping long-range gene regulatory sequences and help to isolate genes with defined functional boundaries in numerous projects including those of therapeutic interest.  相似文献   

2.
《Gene》1998,216(1):55-65
The Cre recombinase mediates precise site-specific recombination between a pair of loxP sequences through an intermediate containing Holiday junction. The recombination junction in the loxP sequence is located within the asymmetric 8-nucleotide spacer region. To examine the role of each nucleotide sequence of the spacer region in the recombination process, we synthesized a complete set of 24 loxP spacer mutants with single-base substitutions and 30 loxP spacer mutants with double-base substitutions. Each synthesized loxP mutant was ligated at both ends of a linear DNA or to one end of a DNA-containing wild-type loxP at the other end and their recombination efficiencies were analyzed with an in vitro system. The sequence identity of the right two nucleotides and left four nucleotides in the central six bases of the spacer region was found to be essential for formation and resolution, respectively, of the intermediate product. Furthermore, even when homology was maintained, the recombination efficiencies were lower than that of wild-type loxP and varied among mutants. Based on this knowledge, we identified two loxP mutants with double-base substitutions, mutants 5171 and 2272, which recombine efficiently with an identical mutant but not with the other mutant or wild-type loxP.  相似文献   

3.
The bacteriophage P1 Cre/loxP site-specific recombination system is a useful tool in a number of genetic engineering processes. The Cre recombinase has been shown to act on DNA sequences that vary considerably from that of its bacteriophage recognition sequence, loxP. However, little is known about the sequence requirements for functional lox-like sequences. In this study, we have implemented a randomized library approach to identify the sequence characteristics of functional lox site domains. We created a randomized spacer library and a randomized arm library, and then tested them for recombination in vivo and in vitro. Results from the spacer library show that, while there is great plasticity, identity between spacer pairs is the most important factor influencing function, especially in in vitro reactions. The presence of one completely randomized arm in a functional loxP recombination reaction revealed that only three wild-type loxP arms are necessary for successful recombination in Cre-expressing bacteria, and that there are nucleotide preferences at the first three and last three positions of the randomized arm for the most efficiently recombined sequences. Finally, we found that in vitro Cre recombination reactions are much more stringent for evaluating which sequences can support efficient recombination compared to the 294-CRE system.  相似文献   

4.
A newly designed site-specific recombination system is presented which allows multiple targeted markerless deletions. The most frequently used tool for removing selection markers or to introduce genes by recombination-mediated cassette exchange is the Cre/loxP system. Many mutant loxP sites have been created for this purpose. However, this study presents a chimeric mutant loxP site denoted mroxP-site. The mroxP site consists of one Cre (loxP/2) and one MrpA (mrpS/2) binding site separated by a palindromic 6-bp spacer sequence. Two mroxP-sites can be recombined by Cre recombinase in head-to-tail as well as in head-to-head orientation. In the head-to-head orientation and the loxP half-sites inside, Cre removes the loxP half-sites during site-specific recombination, creating a new site, mrmrP. The new site is essentially a mrpS site with a palindromic spacer and cannot be used by Cre for recombination anymore. It does, however, present a substrate for the recombinase MrpA. This new system has been successfully applied introducing multiple targeted gene deletions into the Escherichia coli genome. Similar to Cre/loxP and FLP/FRT, this system may be adapted for genetic engineering of other pro- and eukaryotes.  相似文献   

5.
Bacteriophage lambda integration and exicision occur by reciprocal recombination within a 15-base homologous core region present in the recombining attachment (att) sites. Strand exchange within the core occurs at precise nucleotide positions, which define an overlap region in which the products of recombination contain DNA strands derived from different parents. In order to define the role of sequence homology during recombination we have constructed point mutations within the core and assayed their effects in vivo and in vitro on site-specific recombination. Two of the mutations are located at position ?3 of the core, which is one base-pair outside of the overlap region where strand exchange occurs. These mutations do not affect integrative or excisive recombination, thereby suggesting that homology outside the overlap region is not required for recombination. Two other mutations are located at position ?2 of the core, which is one base-pair within the overlap region. These mutations show severely depressed integrative and excisive recombination activities in vitro and in vivo when recombined against wild-type att sites. However, the ?2 mutations show normal recombination activity when recombined against att sites containing the homologous mutation, thereby suggesting that homology-dependent DNA interactions are required within the overlap region for effective recombination. In vitro recombination between homoduplex attP sites and heteroduplex attB sites demonstrated that the DNA interactions require only one strand of the attB overlap region to be homologous to attP in order to promote recombination.  相似文献   

6.
The site-specific recombinase Cre has often been used for on/off regulation of expression of transgenes introduced into the mammalian chromosome. However, this method is only applicable to the regulation of a single gene and cannot be used to simultaneously regulate two genes, because site-specific recombination occurs from the target loxP sequence of one regulating unit to the loxP sequence of any other unit and would eventually disrupt the structure of both regulating units. We previously reported a mutant loxP sequence with a two base substitution called loxP V (previously called loxP 2272), with which wild-type loxP cannot recombine but with which the identical mutant loxP recombines efficiently. In the present study we isolated cell lines bearing two regulating units on a chromosome containing a pair of wild-type loxP sequences or mutant loxP V sequences. After infection with Cre-expressing recombinant adenovirus AxCANCre, expression of a gene in each regulating unit was simultaneously turned on and off. Southern analyses showed that both regulating units were processed simultaneously and independently, even after infection with a limited amount of AxCANCre. The results showed that simultaneous regulation of gene expression on a mammalian chromosome mediated by Cre can be achieved by using mutant loxP V and wild-type loxP. This method may be a useful approach for conditional transgenic/knockout animals and investigation of gene function involving two genes simultaneously. Another possible application is for preparation of a new packaging cell line of viral vectors through simultaneous production of toxic viral genes.  相似文献   

7.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

8.
A genetic screen identifies novel non-compatible loxP sites   总被引:4,自引:2,他引:2  
The ability of the Cre/lox system to make precise genomic modifications is a tremendous accomplishment. However, recombination between cis-linked heterospecific lox sites limits the use of Cre- mediated exchange of DNA to systems where genetic selection can be applied. To circumvent this problem we carried out a genetic screen designed to identify novel mutant spacer-containing lox sites displaying enhanced incompatibility with the canonical loxP site. One of the mutant sites recovered appears to be completely stable in HEK293 cells constitutively expressing Cre recombinase and supports recombinase-mediated cassette exchange (RMCE) in bacteria and mammalian cell culture. By preventing undesirable recombination, these novel lox sites could improve the efficiency of in vivo gene transfer.  相似文献   

9.
Non-contact positions impose site selectivity on Cre recombinase   总被引:5,自引:2,他引:3       下载免费PDF全文
A first step in Cre-mediated site-specific DNA recombination is binding to the two 13 bp repeats of the 34 bp site loxP. Several nucleotides within loxP do not directly contact the bound enzyme, yet mutation at two of these base pairs, at positions 11 and 12 in each repeat, results in a 100 000-fold reduction in recombination. To understand better how Cre selects DNA sequences for recombination, we combined DNA shuffling mutagenesis and a forward selection strategy to obtain Cre mutants that recombine at 100% efficiency a mutant loxK2 site carrying these dinucleotide changes. The role of the several mutations found in these Cre isolates was analyzed both in vivo and biochemically with purified enzymes. A single mutation at E262 accounts for most but not all of the enhanced activity at loxK2. Secondary mutations act in one or more of three ways: enhancement of loxK2 binding, accelerated synthesis of Cre in vivo or faster DNA recombination at the alternative spacer region present in loxK2. Systematic analysis of all 20 natural amino acids at position E262 shows that the naturally occurring glutamate residue at this position provides the optimal balance of efficiency of recombination at loxP and maximal discrimination against loxK2.  相似文献   

10.
The Cre/loxP recombination system is a commonly used tool to alter the mouse genome in a conditional manner by deletion or inversion of loxP-flanked DNA segments. While Cre-mediated deletion is essentially unidirectional, inversion is reversible and therefore does not allow the stable alteration of gene function in cells that constitutively express Cre. Site-directed mutagenesis yielded a pair of asymmetric loxP sites (lox66 and lox71) that display a favorable forward reaction equilibrium. Here, we demonstrate that lox66/lox71 mediates efficient and predominantly unidirectional inversion of a switch substrate targeted to the mouse genome in combination with either inducible or cell type-specific cre-transgenes in vivo.  相似文献   

11.
We report here modifications of human β-globin PAC clones by homologous recombination in Escherichia coli DH10B, utilising a plasmid temperature sensitive for replication, the recA gene and a wild-type copy of the rpsL gene which allows for an efficient selection for plasmid loss in this host. High frequencies of recombination are observed even with very small lengths of homology and the method has general utility for introducing insertions, deletions and point mutations. No rearrangements were detected with the exception of one highly repetitive genomic sequence when either the E.coli RecA- or the lambdoid phage encoded RecT and RecE-dependent recombination systems were used.  相似文献   

12.
Cre is widely used for DNA tailoring and, in combination with recombineering techniques, to modify BAC/PAC sequences for generating transgenic animals. However, mammalian genomes contain recombinase recognition sites (cryptic loxP sites) that can promote illegitimate DNA recombination and damage when cells express the Cre recombinase gene. We have created a new bioinformatic tool, FuzznucComparator, which searches for cryptic loxP sites and we have applied it to the analysis of the whole mouse genome. We found that cryptic loxP sites occur frequently and are homogeneously distributed in the genome. Given the mammalian nature of BAC/PAC genomic inserts, we hypothesised that the presence of cryptic loxP sites may affect the ability to grow and modify BAC and PAC clones in E. coli expressing Cre recombinase. We have observed a defect in bacterial growth when some BACs and PACs were transformed into EL350, a DH10B-derived bacterial strain that expresses Cre recombinase under the control of an arabinose-inducible promoter. In this study, we have demonstrated that Cre recombinase expression is leaky in un-induced EL350 cells and that some BAC/PAC sequences contain cryptic loxP sites, which are active and mediate the introduction of single-strand nicks in BAC/PAC genomic inserts.  相似文献   

13.
K Bidwell  A Landy 《Cell》1979,16(2):397-406
Integration of bacteriophage λ DNA into the chromosome of its E. coli host proceeds via a site-specific recombination between specific loci (att sites) on the phage and bacterial chromosomes. Infection of an E. coli host deleted for the primary bacterial att site results in λ integration with reduced efficiency at a number of different “secondary att sites” scattered around the E. coli chromosome. The first DNA sequence analysis of such a secondary att site, that occurring in the galT gene, is reported here, and several features pertinent to the mechanism of int-dependent site-specific recombination are discussed.Previous studies have shown that the crossover in int-dependent recombination must be somewhere within a 15 bp sequence (core region) common to the phage and primary bacterial att sites, as well as to the left and right prophage att sites which are at the junctures between prophage and host DNA. Comparison of the galT secondary prophage att sites with the primary prophage att sites allows determination of the analogous “core” region in the galT secondary att site. The 15 bp sequence thus identified shows an interrupted homology (8 out of 15) with the wild-type core. The extent and arrangement of nonhomologous bases allow precise placement of the crossover point for this recombination to the +4–+5 internucleotide bond of the core region.Sequences flanking the core region show no obvious homology with analogous sequences of the phage or primary bacterial att sites. Comparison of the galT left prophage att site with the analogous wild-type site is of particular interest and is discussed in relation to binding studies with purified int protein.  相似文献   

14.
Insertion and excision of the chromosome of phage λ occurs by recombination at special regions of the phage and bacterial chromosomes known as attachment sites (alt's). We have isolated att mutants which display reduced recombination frequencies. The mutations are cis-dominant, trans-recessive, and can be crossed into a phage, bacterial or prophage att. These results suggest that the att's, although different over-all, include the same DNA sequence as part of their structure, and that the mutations reside in these sequences. Crosses between mutant and wild-type att's occasionally yield heterozygotes. This result suggests that recombination of the att's generates complementary single-strands via staggered nicks in these common sequences. Recombinant att's are then formed by the interannealing of single-strands of different att's followed by ligation.  相似文献   

15.
In vitro compartmentalization (IVC) was employed for the first time to select for novel bacteriophage λ integrase variants displaying significantly enhanced recombination activity on a non-cognate target DNA sequence. These variants displayed up to 9-fold increased recombination activity over the parental enzyme, and one mutant recombined the chosen non-cognate substrate more efficiently than the parental enzyme recombined the wild-type DNA substrate. The in vitro specificity phenotype extended to the intracellular recombination of episomal vectors in HEK293 cells. Surprisingly, mutations conferring the strongest phenotype do not occur in the λ integrase core-binding domain, which is known to interact directly with cognate target sequences. Instead, they locate to the N-terminal domain which allosterically modulates integrase activity, highlighting a previously unknown role for this domain in directing integrase specificity. The method we describe provides a robust, completely in vitro platform for the development of novel integrase reagent tools for in vitro DNA manipulation and other biotechnological applications.  相似文献   

16.
The lysogenic bacteriophage MAV1, which is associated with the arthritogenicity of Mycoplasma arthritidis, was characterized. Several strains of M. arthritidis were examined for their ability to support growth of MAV1. A PFU assay was developed, and the sensitivity of phage to various chemical treatments was assayed. The most notable result was the resistance of MAV1 to proteinase K. The MAV1 genome is a double-stranded, linear DNA molecule of about 16 kb. The site of MAV1 DNA integration in the host chromosome was investigated. The ends of MAV1 DNA were cloned from three independent lysogens shown to have MAV1 DNA inserted at different sites in the host. The nucleotide sequences of the ends of the MAV1 genome and of the MAV1 DNA-chromosomal DNA junctions from each of three lysogens were determined. Sequences flanking the integrated prophage and the ends of native MAV1 DNA were determined, allowing the identification of the phage DNA (attP) and bacterial DNA (attB) recombination sites. Analysis of the left MAV1 DNA-chromosomal DNA junction sites showed a single-base heterogeneity located within MAV1 DNA sequences immediately adjacent to the attB sequence. A model for MAV1 integration-excision is proposed.  相似文献   

17.
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 × 10−1/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.  相似文献   

18.
Bacteriophage 16-3 inserts its genome into the chromosome of Rhizobium meliloti strain 41 (Rm41) by site-specific recombination. The DNA regions around the bacterial attachment site (attB) and one of the hybrid attachment sites bordering the integrated prophage (attL) were cloned and their nucleotide sequences determined. We demonstrated that the 51 by region, where the phage and bacterial DNA sequences are identical, is active as a target site for phage integration. Furthermore it overlaps the 3′ end of a putative proline tRNA gene. This gene shows 79% similartiy to the corresponding proline tRNA-like genomic target sequence of certain integrative plasmids in Actinomycetes.  相似文献   

19.
Single, 824 bp repeating units of Xenopus laevis oocyte-type 5S DNA were inserted into the recombination vectors, λrva and λrvb. When the inserts had the same orientation with respect to the λ chromosomes, Spi-imm434 recombinants were recovered by selection on a P2, λ double lysogenic host. Because of the structure of the vectors, the crossover point in each recombinant must lie completely within the 5S DNA insert. The physical characteristics of these recombinants were determined by examination of restriction enzyme digests. By use of RecA mutant hosts and the Red- vector, λrvc, recombination frequencies were measured separately for the bacterial and phage systems.Some of the recombination events resulted in 5S DNA inserts of altered length due to unequal crossovers within repeated sequences in the 5S DNA spacer. The occurrence of just such events in frog 5S DNA had been predicted, based on the structure of 5S DNA and evolutionary considerations.  相似文献   

20.

Background

Chromatin adjoining the site of integration of a transgene affects expression and renders comparisons of closely related transgenes, such as those derived from a BAC deletion series retrofitted with enhancer-traps, unreliable. Gene targeting to a pre-determined site on the chromosome is likely to alleviate the problem.

Findings

A general procedure to replace the loxP site located at one end of genomic DNA inserts in BACs with lox66 is described. Truncating insert DNA from the loxP end with a Tn10 transposon carrying a lox66 site simultaneously substitutes the loxP with a lox66 sequence. The replacement occurs with high stringency, and the procedure should be applicable to all BACs in the public domain. Cre recombination of loxP with lox66 or lox71 was found to be as efficient as another loxP site during phage P1 transduction of small plasmids containing those sites. However the end-deletion of insert DNA in BACs using a lox66 transposon occurred at no more than 20% the efficiency observed with a loxP transposon. Differences in the ability of Cre protein available at different stages of the P1 life cycle to recombine identical versus non-identical lox-sites is likely responsible for this discrepancy. A possible mechanism to explain these findings is discussed.

Conclusions

The loxP/lox66 replacement procedure should allow targeting BACs to a pre-positioned lox71 site in zebrafish chromosomes; a system where homologous recombination-mediated "knock-in" technology is unavailable.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号