首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoproteins in the plasma are the major source of cholesterol obtained by the ovarian theca and granulosa cells for steroidogenesis. In this study, we have identified mRNA expression in bovine theca and granulosa cells of two lipoprotein receptors, low density lipoprotein receptor (LDLr) and very low density lipoprotein receptor (VLDLr) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. In the corpus luteum (CL) both these receptors were found in the developing and differentiating stages whereas only mRNA for VLDLr was detected in the regression stage. This study also described for the first time, the presence of lipoprotein receptor related protein (LRP8) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. This may indicate a role of LRP8 in cholesterol delivery to steriodogenic cells. LRP8 was not detected in any of the CL stages. The roles of the LDLr superfamily in lipid transport to ovarian cells and its participation in follicular and CL development and regression is discussed.  相似文献   

2.
《Reproductive biology》2014,14(4):276-281
Follicular growth and steroidogenesis are dependent on gonadotropin binding to their receptors in granulosa and theca cells of ovarian follicles. The aim of the present study was to evaluate the expression patterns of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) in ovarian follicular structures from cows with cystic ovarian disease (COD) as compared with those of regularly cycling cows. Relative real-time RT-PCR analysis showed that the expression of FSHR mRNA in granulosa cells was highest in small antral follicles, then decreased significantly as follicles increased in size, and was lowest in cysts. FSHR mRNA was not detected in the theca cells of any follicular category, including cysts. LHCGR mRNA expression in granulosa cells was significantly higher in large antral follicles than in cysts, and not detected in granulosa cells of small and medium antral follicles. In theca cells, the expression level of LHCGR mRNA in medium antral follicles was higher than in small and large antral follicles, whereas that in follicular cysts it was similar to those in small and medium antral follicles, but higher than that in large antral follicles. Our findings provide evidence that there is an altered gonadotropin receptor expression in bovine cystic follicles, and suggest that in conditions characterized by altered ovulation, such as COD, changes in the signaling system of gonadotropins may play a fundamental role in their pathogenesis.  相似文献   

3.
Bovine follicular atresia is associated with the apoptosis of granulosa cells and the subsequent loss of oocyte competence through the reduction of cellular contact (e.g., gap junctions). Several components of the insulin-like growth factor (IGF) system are thought to affect follicular atresia. Whereas the IGF-binding proteins (IGFBPs) are present in varying quantities throughout follicular development, IGFBP-5 appears to be present only during atresia, in parallel with its regulation in other tissue remodeling systems. However, to our knowledge, no connection has yet been made between atresia, low-molecular-weight IGFBP content, and oocyte quality in the bovine ovary. Caspases are actively involved in ovarian follicular atresia, and apoptosis in antral follicles is caspase-3-dependent. Hence, the aim of the present study was to investigate the use of these factors in the assessment of oocyte quality and developmental potential. Oocytes were aspirated, morphologically classified, and individually matured in vitro. The follicular fluid and granulosa cells of these follicles were analyzed for IGFBP profile and caspase-3 activity, respectively. A significant correlation was found between the presence of low-molecular-weight IGFBPs in bovine follicular fluid and caspase-3 activity of granulosa cells isolated from individual follicles. The highest percentage of development to the blastocyst stage was observed in oocytes from slightly atretic follicles. This group of oocytes contained an equal proportion of oocytes at grades 1-3. These data demonstrate that low-molecular-weight IGFBP profile is a more reliable method than the traditional morphological assessment of oocytes and can be used as an effective marker of developmentally competent oocytes. Importantly, these results have implications for the use of noninvasive follicular fluid markers in the selection of competent oocytes to improve outcomes of in vitro fertilization.  相似文献   

4.
Angiogenesis is the process that drives blood vessel development in growing tissues in response to the local production of angiogenic factors. With the present research the authors have studied vascular endothelial growth factor (VEGF) production in ovarian follicles as a potential mechanism of ovarian activity regulation. Prepubertal gilts were treated with 1250 IU equine chorionic gonadotropin (eCG) followed 60 h later by 750 IU of human chorionic gonadotropin (hCG) in order to induce follicle growth and ovulation. Ovaries were collected at different times of the treatment and single follicles were isolated and classified according to their diameter as small (<4 mm), medium (4-5 mm), or large (>5 mm). VEGF levels were measured in follicular fluid by enzyme immunoassay, and VEGF mRNA content was evaluated in isolated theca and granulosa compartments. Equine chorionic gonadotropin stimulated a prompt follicular growth and induced a parallel evident rise in VEGF levels in follicular fluid of medium and large follicles. Analysis of VEGF mRNA levels confirmed the stimulatory effect of eCG, showing that it is confined to granulosa cells, whereas theca cells maintained their VEGF steady state mRNA. Administration of hCG 60 h after eCG caused a dramatic drop in follicular fluid VEGF that reached undetectable levels in 36 h. A parallel reduction in VEGF mRNA expression was recorded in granulosa cells. The stimulating effect of eCG was also confirmed by in vitro experiments, provided that follicles in toto were used, whereas isolated follicle cells did not respond to this hormonal stimulation. Consistent with the observation in vivo, granulosa cells in culture reacted to hCG with a clear block of VEGF production. These results demonstrate that while follicles of untreated animals produce stable and low levels of the angiogenic factor, VEGF markedly rose in medium and large follicles after eCG administration. The increasing levels, essentially attributable to granulosa cells, are likely to be involved in blood vessel development in the wall of growing follicles, and may play a local key role in gonadotropin-induced follicle development. When ovulation approaches, under the effect of hCG, the production of VEGF is switched off, probably creating the safest conditions for the rupture of the follicle wall while theca cells maintained unaltered angiogenic activity, which is probably required for corpus luteum development.  相似文献   

5.
It has been suggested that locally produced insulin-like growth factor binding protein 4 (IGFBP4) inhibits ovarian follicular growth and ovulation by interfering with IGF action. According to this hypothesis, IGFBP4-expressing follicles should demonstrate atresia, whereas healthy dominant follicles should be devoid of IGFBP4. Alternatively, according to this view, there could be constitutive expression of the inhibitory IGFBP4 but selective expression of an IGFBP4 protease in dominant follicles, allowing the follicle to mature and ovulate because of degradation of the binding protein. To examine these views concerning the role of IGFBP4 in primate follicular selection, we analyzed cellular patterns of IGFs 1 and 2, IGFBP4, and the IGFBP4 protease (pregnancy-associated plasma protein A [PAPP-A]) mRNA expression in ovaries from late follicular phase rhesus monkeys using in situ hybridization. The IGF1 mRNA was not detected, but the IGF2 mRNA was abundant in theca interna and externa of all antral follicles and was present in the granulosa of large preovulatory and ovulatory follicles. The IGFBP4 mRNA was selectively expressed by LH receptor (LHR) mRNA-positive theca interna cells of healthy antral follicles (defined by aromatase and gonadotropin receptor expression) and by LHR-expressing granulosa cells found only in large preovulatory and ovulatory follicles (defined by size and aromatase expression). The PAPP-A mRNA was abundant in granulosa cells of most follicles without obvious relation to IGFBP4 expression. Ovarian IGFBP4 mRNA levels were markedly increased after treatment with the LH analog, hCG, whereas IGF2 and PAPP-A mRNAs were not significantly altered. In summary, IGFBP4 expression appears to be associated with follicular selection, not with atresia, in the monkey ovary. The IGFBP4 is consistently expressed in healthy theca interna and in luteinized granulosa cells, likely under LH regulation. The IGFBP4 protease, PAPP-A, is widely expressed without apparent selectivity for IGFBP4-expressing follicles or for dominant follicles. These observations suggest that IGFBP4 or an IGFBP4 proteolytic product may be involved with LH-induced steroidogenesis and/or luteinization rather than with inhibition of follicular growth.  相似文献   

6.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

7.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

8.
Using immunohistochemistry and in situ hybridization, we attempted to identify the estrogen receptor (ER) protein and messenger RNA (mRNA) in sheep ovaries during the follicular phase of the estrous cycle. Monoclonal anti-ER antibodies H222 and 1D5 were used for localizing estrogen receptor on ovarian cryo-sections. Labeling for ER was found over the nuclei of surface epithelium, interstitial tissue, and granulosa cells of small as well as large ovarian follicles. In the preantral and small antral follicles, intense nuclear ER labeling was observed in mural granulosa cells and particularly in cumulus/granulosa cells surrounding the oocyte. In the large healthy looking follicles, greater diversity in labeling for ER was observed, which is characterized by mixed populations of granulosa cells expressing positive and more or less negative nuclear labeling. Such a pattern of labeling was particularly evident in follicles showing the signs of atresia. Generally, more intense nuclear staining was localized in granulosa cells proximal to basal membrane. In situ hybridization studies revealed the presence of ER mRNA in ovarian tissue. Autoradiographic visualization localized ER mRNA expression over the granulosa cells of healthy follicles of all sizes. Level of hybridization signal was comparable in mural and cumulus granulosa cells. In atretic follicles, the level of hybridization signal in granulosa cells was comparable to that of healthy follicles. A relatively weaker level of labeling was observed in granulosa cells dispersed in follicular antrum in follicles with advanced atretic lesions. Theca cells expressed a lower level of labeling than granulosa cells. Specificity of labeling for both ER protein and mRNA in ovary was proved by parallel probing the ovine uterus. Ovine ER recognition by both H222 and 1D5 antibodies was also proved by immunoblotting. These studies demonstrate the presence of the estrogen receptor and its messenger RNA in the sheep ovary and suggest an autocrine/paracrine role of estradiol and its receptor in the regulation of ovarian follicle development in sheep. Mol. Reprod. Dev. 48:53–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Ovulation accompanied by tissue damage can cause an increase in the level of tissue factor (TF) in the follicular fluid, triggering the extrinsic coagulation pathway. However, follicular fluid must block fibrin formation and maintain fluidity until the release of the oocyte at ovulation. The combination of sulfated proteoglycan, antithrombin, and TF pathway inhibitor (TFPI) appears to play a critical role in the hypocoagulability of human follicular fluid. When compared with plasma, folicular fluid differs markedly in the levels of a number of important coagulation proteins. Principal among these are 15-fold, 13-fold, and 3.7-fold increases in free TFPI, thrombin-antithrombin complex, and TF, respectively. The excessively prolonged activated partial thromboplastin time (APTT) and prothrombin time (PT) of human ovarian follicular fluid appear to be primarily due to high concentrations of sulfated proteoglycans, which accelerate the inactivation of thrombin and the anti-Xa activity of TFPI. Thus, heparitinase treatment shortened the clotting times of follicular fluid and reduced the inhibition of thrombin by the proteoglycan fraction combined with a fraction containing antithrombin. The remaining prolongation of APTT and PT may be caused by high levels of free TFPI in follicular fluid, which were confirmed by Northern blotting analysis, demonstrating TFPI mRNA expression by granulosa cells.  相似文献   

10.
Porcine follicular fluid has been shown to have a specific water-soluble receptor for human chorionic gonadotropin (hCG). The binding of [125I] hCG to follicular fluid is inhibited by unlabelled hCG, LH but not FSH, ACTH and GH. The binding of hormone to the receptor in follicular fluid is a saturable phenomenon and Scatchard analysis suggested that the receptor has high affinity to hCG with no changes as the follicle enlarges. In contrast, follicular fluid from large follicles (6-12 mm) has higher binding capacity (2.04 +/- 0.12 fmol/mg protein) than follicular fluid isolated from medium (3-5 mm) and small (1-2 mm) follicles (0.60 +/- 0.05 and 0.44 +/- 0.04 fmol/mg protein, respectively). With the aid of affinity chromatography on hCG-CNBr-Sepharose 6-B a homogeneous fraction with Mr about 65,000 as estimated by SDS-PAGE was isolated. Treatment of follicular fluid with several protein-modifying reagents changed interactions of [125I] hCG with both soluble receptor and that bound to granulosa cell membrane in the similar manner. The [125I] hCG binding capacity of follicular fluid represents about 9.5% of the total binding capacity of granulosa cells. Finally, soluble LH/hCG receptor is probably secreted actively by follicular cells into follicular fluid. Dead granulosa cells do not release receptor into follicular fluid or incubation medium.  相似文献   

11.
《Reproductive biology》2023,23(1):100710
Postpartum endometritis is known to be associated with ovarian dysfunction in cows. Lipopolysaccharide (LPS) generated by Gram-negative bacteria is recognized by toll-like receptor 4 (TLR4), which leads to an inflammatory response by the generation of cytokines such as tumor necrosis factor-α (TNF-α) and interleukins. In this study, we investigated the effect of endometrial LPS on granulosa cell functions during early follicular development in cows. Uteri and follicles were obtained from a slaughterhouse and classified into either clinical endometritis (CE) or normal groups by vaginal mucus test. TLR4 mRNA and protein in normal cows were expressed in granulosa cells collected from follicles measuring 1–3 and 4–7 mm in a diameter, respectively. LPS content in endometrium and follicular fluid of CE cows was significantly higher than that in normal cows. Compared to normal cows, CE cows showed lower expression of follicular development markers (FSHR, CYP19A1, CCND2, and LHCGR) in granulosa cells, lower estradiol-17β concentrations in follicular fluid, and lower granulosa cell proliferation. CE contraction significantly increased cytokine expressions (TNF, IL-1A, and IL-1B) in granulosa cells and suppressed apoptosis of granulosa cells compared to normal cows. LPS significantly suppressed the expression of follicular development markers and the production of estradiol-17β in granulosa cells and reduced granulosa cells proliferation compared to cells cultured without LPS. LPS significantly increased cytokine expressions and suppressed granulosa cell apoptosis. Thus, the present results suggest that the existence of LPS in developing follicles is one of the causes of ovarian quiescence in cows.  相似文献   

12.
13.
14.
The hormonal regulation of ovarian gonadotropin-releasing hormone (GnRH) receptor mRNA expression has been examined by in situ hybridization in hypophysectomized immature rats. In hypophysectomized rats, GnRH receptor mRNA expression is localized in the interstitial cells. After diethylstilbestrol treatment, most follicles grow to form early antral follicles and express GnRH receptor mRNA in the peripheral part of the granulosa layer, indicating that the expression in the growing follicles is estrogen-dependent. Only weak or no expression of the receptor mRNA is detectable in the atretic follicles of hypophysectomized rats, whereas very strong expression has been observed in the granulosa cells of atretic follicles of intact immature rats. Administration of testosterone or a GnRH agonist, both of which are atretic agents for ovarian follicles, to hypophysectomized rats markedly increases the apoptotic cell death of the granulosa cells but fails to induce GnRH receptor mRNA expression. The co-administration of these agents with diethylstilbestrol causes the granulosa cells of atretic follicles to express the receptor mRNA very strongly, suggesting that this mRNA expression in the atretic follicles is also estrogen-dependent. On the other hand, expression of the receptor mRNA in the ovarian interstitial cells is not affected by hypophysectomy or hormone treatments. All of these results clearly indicate that estrogen is essential for the expression of ovarian GnRH receptor mRNA in the granulosa cells of atretic follicles and growing follicles, whereas the expression in the interstitial cells is estrogen-independent.  相似文献   

15.
It is well established that rat ovarian granulosa cells produce tissue plasminogen activator (tPA). The synthesis and secretion of the enzyme are induced by gonadotropins, and correlate well with the time of follicular rupture in vivo. We have found that in contrast, mouse granulosa cells produce a different form of plasminogen activator, the urokinase-type (uPA). As with tPA synthesis in the rat, uPA production by mouse granulosa cells is induced by gonadotropins, dibutyryl cAMP, and prostaglandin E2. However, dexamethasone, a drug which has no effect on tPA synthesis in rat cells inhibits uPA synthesis in the mouse. Results of these determinations made in cell culture were corroborated by examining follicular fluid, which is secreted in vivo predominantly by granulosa cells, from stimulated rat and mouse ovarian follicles. Rat follicular fluid contained only tPA, and mouse follicular fluid only uPA, indicating that in vivo, granulosa cells from the two species are secreting different enzymes. The difference in the type of plasminogen activator produced by the rat and mouse granulosa cells was confirmed at the messenger RNA level. After hormone stimulation, only tPA mRNA was present in rat cells, whereas only uPA mRNA was found in mouse cells. Furthermore, the regulation of uPA levels in mouse cells occurs via transient modulation of steady-state levels of mRNA, a pattern similar to that seen with tPA in rat cells.  相似文献   

16.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

17.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

18.
Nuclear factor-κB (NF-κB) signaling is involved in regulating a great number of normal and abnormal cellular events. However, little is known about its role in ovarian follicular development. In this study, we found NF-κB signaling is activated during the transition from secondary to antral follicles. We generated active NF-κB mice and found that antral follicular numbers were higher than wild-type ovaries. Activation of NF-κB signaling could enhance granulosa cell proliferation and regress granulosa cell apoptosis of mouse ovarian follicles. Higher follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/choriogonadotropin receptor expressions were observed in active NF-κB ovaries compared to wild type. Furthermore, we confirmed that NF-κB signaling was indeed involved in the granulosa cell viability and proliferation through FSHR using COV434 cell line. This is the first experimental evidence that NF-κB signaling is implicated in the control of follicular development through FSHR and its corresponding target molecules, which might be achieved by targeting proliferation and apoptosis in follicular granulosa cells.  相似文献   

19.
20.
Differences in rates of steroid production and secretion will, eventually, determine the developmental rates of ovarian follicles. The major supply of cholesterol, the precursor for steroid and androgen biosynthesis, to ovarian cells is from circulating lipoproteins via membrane receptors from the low density lipoprotein receptor (LDL) superfamily. This occurs by either endocytosis, which has been described for very low density lipoprotein receptors (VLDLr), for LDL receptors (LDLr), and by the selective uptake pathway described for the scavenger receptor class B type 1 receptor (SRB1) and the recently described ovarian receptor, lipoprotein receptor-related protein 8 (LRP8). In this study, the mRNA expression of these four cholesterol receptors in bovine ovarian cells was determined at different stages of follicular development. In small antral follicles, mRNA expression of the endocytosis receptors was higher than in large antral follicles. Expression of LRP8 mRNA increased linearly with follicular size together with an increase in LDL, VLDL, and cholesterol concentrations in the follicular fluid. SRB1 mRNA expression tended to increase with follicular diameter. Because different mRNA expression patterns were found for the two types of receptor, this may imply different regulation of cholesterol supply at different stages of follicular development. Accumulation of LDL and VLDL particles in the follicular fluid of large antral follicles may enhance cholesterol availability for the intense steroidogenic activity that is essential at these stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号