首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mitogen-activated protein (MAP) kinase ERK2 is an essential signal transduction molecule that mediates extracellular signaling by all polypeptide growth factors. Full activation of ERK2 requires phosphorylation at both a threonine residue (Thr(183)) conserved in most protein kinases as well as a tyrosine residue (Tyr(185)) unique to members of the mitogen-activated protein kinase family. We have characterized the kinetic role of phosphorylation at each site with respect to the overall activation mechanism, providing a complete picture of the reaction steps involved. Phosphorylation at Tyr(185) serves to configure the ATP binding site, while phosphorylation at both residues is required to stabilize binding of the protein substrate, myelin basic protein. Similar control mechanisms are employed to stabilize ATP and myelin basic protein in the phosphoryl group transfer reaction, accounting for the enormous increase in turnover rate. The mechanism of ERK2 activation is kinetically similar to that of the cell cycle control protein, cdk2/cyclinA. Phosphorylation of Tyr(185) in ERK2 and association of cyclinA with cdk2 both serve to stabilize ATP binding. Subsequent phosphorylation of both enzymes on threonine serves to stabilize binding of the phosphoacceptor substrate.  相似文献   

3.
Ebola virus is a highly lethal pathogen that causes hemorrhagic fever in humans and nonhuman primates. Among the seven known viral gene products, the envelope glycoprotein (GP) alone induces cell rounding and detachment that ultimately leads to cell death. Cellular cytoxicity is not seen with comparable levels of expression of a mutant form of GP lacking a mucin-like domain (GPDeltamuc). GP-induced cell death is nonapoptotic and is preceded by downmodulation of cell surface molecules involved in signaling pathways, including certain integrins and epidermal growth factor receptor. To investigate the mechanism of GP-induced cellular toxicity, we analyzed the activation of several signal transduction pathways involved in cell growth and survival. The active form of extracellular signal-regulated kinases types 1 and 2 (ERK1/2), phospho-ERK1/2, was reduced in cells expressing GP compared to those expressing GPDeltamuc as determined by flow cytometry, in contrast to the case for several other signaling proteins. Subsequent analysis of the activation states and kinase activities of related kinases revealed a more pronounced effect on the ERK2 kinase isoform. Disruption of ERK2 activity by a dominant negative ERK or by small interfering RNA-mediated ERK2 knockdown potentiated the decrease in alphaV integrin expression associated with toxicity. Conversely, activation of the pathway through the expression of a constitutively active form of ERK2 significantly protected against this effect. These results indicate that the ERK signaling cascade mediates GP-mediated cytotoxicity and plays a role in pathogenicity induced by this gene product.  相似文献   

4.
The mitogen-activated protein kinase phosphatase 3 (MKP3)-catalyzed hydrolysis of aryl phosphates in the absence and presence of extracellular signal-regulated kinase 2 (ERK2) was investigated in order to provide insights into the molecular basis of the ERK2-induced MKP3 activation. In the absence of ERK2, the MKP3-catalyzed hydrolysis of simple aryl phosphates does not display any dependence on pH, viscosity, and the nature of the leaving group. Increased catalytic activity and enhanced affinity for oxyanions are observed for MKP3 in the presence of ERK2. In addition, normal bell-shaped pH dependence on the reaction catalyzed by MKP3 is restored in the presence of ERK2. Collectively, these results suggest that the rate-limiting step in the absence of ERK2 for the MKP3 reaction corresponds to a substrate-induced conformational change in MKP3 involving active site rearrangement and general acid loop closure. The binding of ERK2 to the N-terminal domain of MKP3 facilitates the repositioning of active site residues and speeds up the loop closure in MKP3 such that chemistry becomes rate-limiting in the presence of ERK2. Remarkably, it is found that the extent of ERK2-induced MKP3 activation is substrate dependent, with smaller activation observed for bulkier substrates. Unlike simple aryl phosphates, the MKP3-catalyzed hydrolysis of bulky polycyclic substrates exhibits bell-shaped pH rate profiles in the absence of ERK2. Furthermore, it is found that glycerol can also activate the MKP3-catalyzed reaction, increase the affinity of MKP3 for oxyanion, and restore the bell-shaped pH rate profile for the MKP3-catalyzed reaction. Thus, the rate of repositioning of catalytic groups and the reorienting of the electrostatic environment in the MKP3 active site can be enhanced not only by ERK2 but also by high affinity substrates or by glycerol.  相似文献   

5.
Yang X  Gabuzda D 《Journal of virology》1999,73(4):3460-3466
ERK1 and ERK2 mitogen-activated protein kinases (MAPK) play a critical role in regulation of cell proliferation and differentiation in response to mitogens and other extracellular stimuli. Mitogens and cytokines that activate MAPK in T cells have been shown to activate human immunodeficiency virus type 1 (HIV-1) replication. Little is known about the signal transduction pathways that activate HIV-1 replication in T cells upon activation by extracellular stimulation. Here, we report that activation of MAPK through the Ras/Raf/MEK signaling pathway enhances the infectivity of HIV-1 virions. Virus infectivity was enhanced by treatment of cells with MAPK stimulators, such as serum and phorbol myristate acetate, as well as by coexpression of constitutively activated Ras, Raf, or MEK (MAPK kinase) in the absence of extracellular stimulation. Treatment of cells with PD 098059, a specific inhibitor of MAPK activation, or with a MAPK antisense oligonucleotide reduced the infectivity of HIV-1 virions without significantly affecting virus production or the levels of virion-associated Gag and Env proteins. MAPK has been shown to regulate HIV-1 infectivity by phosphorylating Vif (X. Yang and D. Gabuzda, J. Biol. Chem. 273:29879-29887, 1998). However, MAPK activation enhanced virus infectivity in some cells lines that do not require Vif function. The HIV-1 Rev, Tat, p17(Gag), and Nef proteins were directly phosphorylated by MAPK in vitro, suggesting that other HIV-1 proteins are potential substrates for MAPK phosphorylation. These results suggest that activation of the ERK MAPK pathway plays a role in HIV-1 replication by enhancing the infectivity of HIV-1 virions through Vif-dependent as well as Vif-independent mechanisms. MAPK activation in producer cells may contribute to the activation of HIV-1 replication when T cells are activated by mitogens and other extracellular stimuli.  相似文献   

6.
Dehydroepiandrosterone-sulfate, the sulfated form of dehydroepiandrosterone, is the most abundant steroid in young adults, but gradually declines with aging. In humans, the clinical application of dehydroepiandrosterone targeting some collagen diseases, such as systemic lupus erythematosus, as an adjunctive treatment has been applied in clinical trial. Here, we report that dehydroepiandrosterone may negatively regulate the mitogen-activated protein kinase pathway in humans via a novel dual specificity protein phosphatase, DDSP (dehydroepiandrosterone-enhanced dual specificity protein phosphatase). DDSP is highly homologous to LCPTP/HePTP, a tissue-specific protein tyrosine phosphatase (PTP) which negatively regulates both ERK and p38-mitogen-activated protein kinase, and is transcribed from the PTPN7 locus by alternative splicing. Although previous reports have shown that the mRNA expression of the LCPTP/HePTP gene was inducible by extracellular signals such as T-cell antigen receptor stimulation, reverse transcribed (RT)-PCR experiments using specific sets of primers suggested that the expression of LCPTP/HePTP was constitutive while the actual inducible sequence was that of DDSP. Furthermore DDSP was widely distributed among different types of human tissues and specifically interacted with p38-mitogen-activated protein kinase. This inducible negative regulation of the p38-mitogen-activated protein kinase-dependent pathway may help to clarify the broad range of dehydroepiandrosterone actions, thereby aiding the development of new preventive or adjunctive applications for human diseases.  相似文献   

7.
Gab1-SHP2 association is required for Erk mitogen-activated protein kinase activation by several growth factors. Gab1-SHP2 interaction activates SHP2. However, an activated SHP2 still needs to associate with Gab1 to mediate Erk activation. It was unclear whether SHP2 is required to dephosphorylate a negative phosphorylation site on Gab1 or whether SHP2 needs the Gab1 pleckstrin homology (PH) domain to target it to the plasma membrane. We found that expression of a fusion protein consisting of the Gab1 PH domain and an active SHP2 (Gab1PH-SHP2DeltaN) induced constitutive Mek1 and Erk2 activation. Linking the active SHP2DeltaN to the PDK1 PH domain or the FRS2beta myristoylation sequence also induced Mek1 activation. Mek1 activation by Gab1PH-SHP2DeltaN was inhibited by an Src inhibitor and by Csk. Significantly, Gab1PH-SHP2DeltaN induced Src activation. Gab1PH-SHP2DeltaN expression activated Ras, and the Gab1PH-SHP2DeltaN-induced Mek1 activation was blocked by RasN17. These findings suggest that Gab1PH-SHP2DeltaN activated a signaling step upstream of Src and Ras. The SHP2 tyrosine phosphatase activity is essential for the function of the fusion protein. Together, these data show that the Gab1 sequence, besides the PH domain and SHP2 binding sites, is dispensable for Erk activation, suggesting that the primary role of Gab1 association with an activated SHP2 is to target it to the membrane.  相似文献   

8.
Here we report the presence of a protein kinase activity associated with human immunodeficiency virus type 1 (HIV-1) particles. We observed phosphorylation of five major proteins by the endogenous protein kinase activity. Phosphoamino acid analysis revealed phosphorylated serine and threonine residues. In addition, we observed autophosphorylation of two proteins in the presence of gamma-ATP in an in-gel phosphorylation assay. These two proteins are not linked by a disulfide bond, suggesting that two different protein kinases are associated with HIV-1 virions. Our results indicate the presence of ERK2 mitogen-activated protein kinase and of a 53,000-molecular-weight protein kinase associated with virions. Moreover, the use of different HIV strains derived from T cells and promonocytic cells, as well as the use of human T-cell leukemia virus type 1 particles, demonstrates that ERK2 is strongly associated with retrovirus particles in a cell-independent manner. Exogenous substrates, such as histone proteins, and a viral substrate, such as Gag protein, are phosphorylated by virus-associated protein kinases.  相似文献   

9.
10.
Ca(2+) influx and mitogen-activated protein (MAP) kinase activation are important phenomena in signal transduction, which are often interconnected. We investigated whether serpentine receptor-dependent, Gbeta-independent activation of MAP kinase ERK2 by chemoattractant cyclic AMP (cAMP) is mediated by Ca(2+) influx in the social amoeba Dictyostelium discoideum. We generated a D. discoideum double mutant, which harbours a temperature-sensitive Gbeta subunit and expresses the apoaequorin protein. Utilizing this mutant, we demonstrate that cAMP induced Ca(2+) influx into intact D. discoideum cells can be blocked completely at both the permissive and the restrictive temperature, by using either gadolinium ions or Ruthenium Red. Under the same experimental conditions, these substances do not abolish cAMP stimulation of ERK2 at either temperature. We conclude that there is a Gbeta- and Ca(2+) influx-independent pathway for the receptor-dependent activation of MAP kinase ERK2 in D. discoideum.  相似文献   

11.
12.
Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.  相似文献   

13.
14.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

15.
In cultured porcine aortic smooth muscle cells,sphingosylphosphorylcholine (SPC), ATP, or bradykinin (BK) induced arapid dose-dependent increase in the cytosolicCa2+ concentration([Ca2+]i)and also stimulated inositol 1,4,5-trisphosphate(IP3) generation. Pretreatmentof cells with pertussis toxin blocked the SPC-induced IP3 generation and[Ca2+]iincrease but had no effect on the action of ATP or BK. In addition, SPCstimulated the mitogen-activated protein kinase (MAPK) and increasedDNA synthesis, whereas neither ATP nor BK produced such effects. Boththe SPC-induced MAPK activation and DNA synthesis were pertussis toxinsensitive. SPC-induced MAPK activation was blocked by treatment ofcells with the phospholipase C inhibitor, U-73122, or the intracellularCa2+-ATPase inhibitor,thapsigargin, but not by removal of extracellular Ca2+. Lysophosphatidic acidinduced cellular responses similar to SPC in a pertussistoxin-sensitive manner in terms of[Ca2+]iincrease, IP3 generation, MAPKactivation, and DNA synthesis. Platelet-derived growth factor (PDGF)also induced a[Ca2+]iincrease, MAPK activation, and DNA synthesis in the same cells; however, the PDGF-induced MAPK activation was not sensitive to pertussis toxin and changes in[Ca2+]i.SPC-induced MAPK activation was inhibited by pretreatment of cells withstaurosporine, W-7, or calmidazolium. Our results suggest that, inporcine aortic smooth muscle cells, MAPK is not activated by theincrease in[Ca2+]iunless a pertussis toxin-sensitive G protein is simultaneously stimulated, indicating the role ofCa2+ in pertussis toxin-sensitiveG protein-mediated MAPK activation.

  相似文献   

16.
17.
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.  相似文献   

18.
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.  相似文献   

19.
The mitogen-activated protein kinase ERK has recently become a focus of studies of synaptic plasticity and learning and memory. Due to the prominent role of potassium channels in regulating the electrical properties of membranes, modulation of these channels by ERK could play an important role in mediating learning-related synaptic plasticity in the CNS. Kv4.2 is a Shal-type potassium channel that passes an A-type current and is localized to dendrites and cell bodies in the hippocampus. The sequence of Kv4.2 contains several consensus sites for ERK phosphorylation. In the present studies, we tested the hypothesis that Kv4.2 is an ERK substrate. We determined that the Kv4.2 C-terminal cytoplasmic domain is an effective ERK2 substrate, and that it is phosphorylated at three sites: Thr(602), Thr(607), and Ser(616). We used this information to develop antibodies that recognize Kv4.2 phosphorylated by ERK2. One of our phospho-site-selective antibodies was generated using a triply phosphorylated peptide as the antigen. We determined that this antibody recognizes ERK-phosphorylated Kv4.2 in COS-7 cells transfected with Kv4.2 and native ERK-phosphorylated Kv4.2 in the rat hippocampus. These observations indicate that Kv4.2 is a substrate for ERK in vitro and in vivo, and suggest that ERK may regulate potassium-channel function by direct phosphorylation of the pore-forming alpha subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号