首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given the role of DotA protein in establishing successful infections and the diversity of host cells interacting with Legionella pneumophila in nature, it is possible that this gene product is a target for adaptive evolution. We investigated the influence of L. pneumophila isolates from natural environments with the molecular evolution of this crucial virulence‐related gene. The population genetic structure of L. pneumophila was inferred from the partial sequences of rpoB and dotA of 303 worldwide strains. The topology of the two inferred trees was not congruent and in the inferred dotA tree the vast majority of the natural environmental isolates were clustered in a discrete group. The Ka/Ks ratio demonstrated that this group, contrary to all others, has been under strong diversifying selection. The alignment of all DotA sequences allowed the identification of several alleles and the amino acid variations were not randomly distributed. Moreover, from these results we can conclude that dotA from L. pneumophila clinical and man‐made environmental strains belong to a sub‐set of all genotypes existing in nature. A split graph analysis showed evidence of a network‐like organization and several intergenic recombination events were detected within L. pneumophila strains resulting in mosaic genes in which different gene segments exhibited different evolutionary histories. We have determined that the allelic diversity of dotA is predominantly found in L. pneumophila isolates from natural environments, suggesting that niche‐specific selection pressures have been operating on this gene. Indeed, the high level of dotA allelic diversity may reflect fitness variation in the persistence of those strains in distinct environmental niches and/or tropism to various protozoan hosts.  相似文献   

2.
Legionella pneumophila dot mutations cause defects in intracellular targeting of the microorganism within cultured macrophages. Each of the previously characterized dot mutations was shown to be complemented by a single open reading frame designated dotA. The defects caused by the mutations appear to be due to disrupted function of the predicted 1048-amino-acid residue DotA protein, and not by polarity effects on a downstream gene. Complementation studies indicated that the product of the dotA53 mutation results in a partially functional DotA protein, consistent with a stable N-terminal fragment having biological activity.  相似文献   

3.
A new real-time PCR assay was developed and validated in combination with an immunomagnetic separation system for the quantitative determination of Legionella pneumophila in water samples. Primers that amplify simultaneously an 80-bp fragment of the dotA gene from L. pneumophila and a recombinant fragment including a specific sequence of the gyrB gene from Aeromonas hydrophila, added as an internal positive control, were used. The specificity, limit of detection, limit of quantification, repetitivity, reproducibility, and accuracy of the method were calculated, and the values obtained confirmed the applicability of the method for the quantitative detection of L. pneumophila. Moreover, the efficiency of immunomagnetic separation in the recovery of L. pneumophila from different kinds of water was evaluated. The recovery rates decreased as the water contamination increased (ranging from 59.9% for distilled water to 36% for cooling tower water), and the reproducibility also decreased in parallel to water complexity. The feasibility of the method was evaluated by cell culture and real-time PCR analysis of 60 samples in parallel. All the samples found to be positive by cell culture were also positive by real-time PCR, while only eight samples were found to be positive only by PCR. Finally, the correlation of both methods showed that the number of cells calculated by PCR was 20-fold higher than the culture values. In conclusion, the real-time PCR method combined with immunomagnetic separation provides a sensitive, specific, and accurate method for the rapid quantification of L. pneumophila in water samples. However, the recovery efficiency of immunomagnetic separation should be considered in complex samples.  相似文献   

4.
Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts.  相似文献   

5.
The population structure of Legionella pneumophila was studied by using partial RNA polymerase gene (rpoB) and DotA gene (dotA) sequences. Trees inferred from rpoB sequences showed that two subspecies of L. pneumophila, Legionella pneumophila subsp. pneumophila and Legionella pneumophila subsp. fraseri, were clearly separated genetically. In both rpoB and dotA trees, 79 Korean isolates used in this study constituted six clonal populations, four of which (designated subgroups P-I to P-IV) were identified in L. pneumophila subsp. pneumophila and two of which (designated subgroups F-I and F-II) were identified in L. pneumophila subsp. fraseri. Although the relationships among subgroups were not identical, such subgrouping was congruent between the rpoB and dotA trees. Type strains of several serogroups did not belong to any subgroup, presumably because isolates similar to these strains were not present among our local sample of the population. There was evidence that horizontal gene transfer or recombination had occurred within L. pneumophila. Contrary to the phylogeny from rpoB and the taxonomic context, subgroups P-III and P-IV of L. pneumophila subsp. pneumophila proved to be closely related to those of L. pneumophila subsp. fraseri or showed a distinct clustering in the dotA tree. It can be inferred that dotA of subgroups P-III and P-IV has been transferred horizontally from other subspecies. The diverse distribution of serogroup 1 strains through the gene trees suggests that surface antigen-coding genes that determine serogroup can be exchanged. Thus, it can be inferred that genetic recombination has been important in the evolution of L. pneumophila.  相似文献   

6.
The exchange of genetic material among bacterial strains and species is recognized as an important factor determining their evolutionary, population genetic, and epidemiological features. We present a detailed analysis of nonvertical inheritance in Legionella pneumophila, a human pathogen and facultative intracellular parasite of amoebas. We have analyzed the exchange of L. pneumophila genetic material with other bacteria at three different levels: population genetics, population genomics, and phylogenomics. At the population genetics level, we have analyzed 89 clinical and environmental isolates after sequencing six coding loci and three intergenic regions for a total of 3,923 bp. In the population genomics analysis, we have studied the roles of recombination and mutation in the common portion of the genome sequence of four L. pneumophila strains. In the phylogenomic analysis, we have studied the phylogenetic origin of 1,700 genes in the L. pneumophila pangenome. For this, we have considered 12 possible phylogenetic alternatives, derived from a reference tree obtained from 104 genes from 41 species, which have been tested under a rigorous statistical framework. The results obtained agree in assigning an important role to nonvertical inheritance in shaping the composition of the L. pneumophila genome and of the genetic variation in its populations. We have found a negative correlation between phylogenetic distance and likelihood of horizontal gene transfer. Phylogenetic proximity and increased chances resulting from sharing the ecological niche provided by the amoeba host have likely had a major influence on the rate of gene exchange in Legionella.  相似文献   

7.
Legionella pneumophila inhabit a variety of natural and man-made aquatic environments, where they live primarily as intracellular parasites of protozoans. Given the proper exposure, however, they can cause opportunistic pneumonic infections in humans. The products of two L. pneumophila genes, dotA and mip, are part of the mechanism mediating the initial invasion of eukaryotic cells, and subsequent intracellular survival and multiplication. In this study, DNA polymorphism of the dotA and mip genes was assessed for 17 clinical and environmental isolates by nucleotide sequencing to determine the level of sequence variation, rates of molecular evolution, and history of gene divergence. The mip gene is highly conserved, whereas dotA is extremely variable, with an average level of nucleotide diversity four times greater than that of mip. Gene trees for each locus support a division of the L. pneumophila isolates into two clonal lineages. There are several disagreements between the gene trees suggesting that although L. pneumophila has a clonal population structure, genetic exchange has contributed to genotypic variation among strains in nature. Received: 12 July 2001 / Accepted: 20 August 2001  相似文献   

8.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

9.
A new real-time PCR assay was developed and validated in combination with an immunomagnetic separation system for the quantitative determination of Legionella pneumophila in water samples. Primers that amplify simultaneously an 80-bp fragment of the dotA gene from L. pneumophila and a recombinant fragment including a specific sequence of the gyrB gene from Aeromonas hydrophila, added as an internal positive control, were used. The specificity, limit of detection, limit of quantification, repetitivity, reproducibility, and accuracy of the method were calculated, and the values obtained confirmed the applicability of the method for the quantitative detection of L. pneumophila. Moreover, the efficiency of immunomagnetic separation in the recovery of L. pneumophila from different kinds of water was evaluated. The recovery rates decreased as the water contamination increased (ranging from 59.9% for distilled water to 36% for cooling tower water), and the reproducibility also decreased in parallel to water complexity. The feasibility of the method was evaluated by cell culture and real-time PCR analysis of 60 samples in parallel. All the samples found to be positive by cell culture were also positive by real-time PCR, while only eight samples were found to be positive only by PCR. Finally, the correlation of both methods showed that the number of cells calculated by PCR was 20-fold higher than the culture values. In conclusion, the real-time PCR method combined with immunomagnetic separation provides a sensitive, specific, and accurate method for the rapid quantification of L. pneumophila in water samples. However, the recovery efficiency of immunomagnetic separation should be considered in complex samples.  相似文献   

10.
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. Legionella parasitize aquatic protozoa with which it co-evolved over an evolutionary long time. The close relationship between hosts and pathogens, their co-evolution, led to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Genome sequencing of L. pneumophila and of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent. Acquisition and loss of these eukaryotic-like genes and domains is an on-going process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT in Legionella seems to be unique in the prokaryotic world the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba associated bacteria and also among the different microorganisms that infect amoeba. This dynamic reshuffling and gene-acquisition has led to the emergence of Legionella as human pathogen and may lead to the emergence of new human pathogens from the environment.  相似文献   

11.
12.
A cloned EcoRI fragment from Legionella pneumophila, which includes 16S and 23S rRNA genes, was used to identify bacteria belonging to the genus Legionella by hybridization to a series of species specific restriction fragments. Examination of the type strains of 28 species of legionellae gave different band patterns in every case. When further isolates of these species were tested the patterns obtained were usually either identical, or very similar, to those of the respective type strains. Thirty-one coded isolates were examined and of these 29 were allocated to the correct species. The remaining strains (a non-Legionella and a L. pneumophila) could not be identified using this technique. The rRNA gene probe method should be of great value in the identification of legionellae, particularly for those species which are at present very difficult to distinguish serologically.  相似文献   

13.
14.
Twitching motility is a form of bacterial translocation over solid or semi-solid surfaces mediated by the extension, tethering, and subsequent retraction of type IV pili. These pili are also known to be involved in virulence, biofilm formation, formation of fruiting bodies, horizontal gene transfer, and protein secretion. We have characterized the presence of twitching motility on agar plates in Legionella pneumophila , the etiological agent of Legionnaires' disease. By examining twitching motility zones, we have demonstrated that twitching motility was dependent on agar thickness/concentration, the chemical composition of the media, the presence of charcoal and cysteine, proximity to other bacteria, and temperature. A knockout mutant of the pilus subunit, pilE , exhibited a total loss of twitching motility at 37 °C, but not at 27 °C, suggesting either the existence of a compensating pilus subunit or of another twitching motility system in this organism.  相似文献   

15.
A prominent 19 kDa surface antigen of Legionella pneumophila, cloned in Escherichia coli, was found to be intimately associated with peptidoglycan. The DNA region encoding this antigen was mapped on an 11.9 kb plasmid by means of deletion analysis and transposon mutagenesis. PhoA+ gene fusions, gene-rated by TnphoA insertions into this region, confirmed the presence of a gene encoding a secreted protein. PhoA+ transposon insertions were also associated with loss of the 19 kDa antigen in immunoassays using a monoclonal antibody (mAb1E9) and the replacement of the 19 kDa antigen with larger fusion proteins in immunoblots using Legionella immune serum. A 1540bp PstI fragment carrying the gene was sequenced, and the open reading frame encoding the antigen was identified. The gene encodes a polypeptide 176 amino acid residues long and 18913Da in size. The presence of a signal sequence of 22 amino acids with a consensus sequence for cleavage by signal peptidase II indicates that the antigen is a lipoprotein, and striking similarity with peptidoglycan-associated lipoproteins (PALs) from E. coli (51% amino acid homology) and Haemophilus influenzae (55% homology) is noted. We conclude that the 19kDa antigen of L. pneumophila is the structural equivalent of the PAL found in other Gram-negative species and suggest that its post-translational acylation may explain its potency as an immunogen.  相似文献   

16.
The mip gene of Legionella pneumophila and the ctxB gene of Vibrio cholerae were amplifiedby PCR respectively.The amplified cDNA was ligated to the pcDNA3.1(+)vector.The recombinant plasmidspcDNA3,1-mip and pcDNA3.1-ctxB were identified by restriction analysis and PCR,and further confirmedby sequencing analysis.NIH3T3 cells were transfected with pcDNA3.1-mip and pcDNA3.1-ctxB accordingto the Lipofection method.Transient and stable products of the co-expression of the mip gene and ctxB genewere detected by immunofluorescence and Western blotting.The results showed that NIH3T3 cells weresuccessfully transfected,and that the transiently and stably co-expressed products can be detected in thetransfected cells.To detect the humoral and cellular immune response in immunized mice induced by the co-immunization of the mip and ctxB genes,female BALB/c mice were immunized intramuscularly with pcDNA3.1-mip and pcDNA3.1-ctxB.The results showed that the specific antibody titer and the cytotoxic T-lymphocyteresponse for pcDNA3,1-mip immunization and co-immunization were increased compared with that ofpcDNA3.1(+) immunization.Furthermore,the specific antibody titer and cytotoxic T-lymphocyte responsefor co-immunization were increased compared with that of pcDNA3.1-mip immunization.Statistical analysisusing one-way analysis of variance(ANOVA)showed that there was a significant difference between thegroups(P<0.01).The results indicated that the ctxB gene enhanced the humoral and cellular immune responseto the mip gene immunization.These findings provide experimental evidence to support the development ofthe L.pneumophila DNA vaccine.  相似文献   

17.
This review describes the mechanisms of gene transfer in Legionella pneumophila. To date, conjugation and transformation have been reported for this organism. Recent reports indicate that an endogenous system of plasmid transfer appears to be required for the intracellular survival and multiplication of L. pneumophila in host cells.  相似文献   

18.
Heat-shock response in Legionella pneumophila   总被引:10,自引:0,他引:10  
The heat-shock response of Legionella pneumophila was examined by radiolabelling bacterial cell proteins with [35S]methionine following a temperature shift from 30 to 42 degrees C. Five heat-shock proteins were identified as having molecular masses of 17, 60, 70, 78, and 85 kilodaltons (kDa). The 85- and 60-kDa proteins were equally distributed between supernatant and pellet fractions following ultracentrifugation at 100,000 x g, the 70- and 78-kDa proteins were found primarily in the supernatant, and the 17-kDa protein was found primarily in the pellet. Synthesis of subsets of the heat-shock proteins could be stimulated by novobiocin, patulin, or puromycin. Ethanol, an effector of the heat-shock response in other microorganisms, had little effect on L. pneumophila, even at the highest concentration tolerated by the bacterial cells (1.9%). Finally, the 60-kDa heat-shock protein of L. pneumophila was immunologically cross-reactive with a polyclonal antibody prepared to the Escherichia coli groEL protein. However, a mouse monoclonal antibody reactive with the 60-kDa protein of all legionellae tested did not cross-react with the E. coli groEL protein, suggesting that the Legionella 60-kDa protein contains common and unique epitopes.  相似文献   

19.
嗜肺军团菌是引起社区获得性和医院内感染性肺炎的重要病原体,中央空调冷凝塔水系统是引发军团菌病的重要传染源,在国内外时有暴发流行,病死率较高。嗜肺军团菌的致病性与其毒力岛基因组密切相关。简要概述了嗜肺军团菌毒力岛、分子分型及其致病性。  相似文献   

20.
This study examined whether Legionella pneumophila is able to thrive on heat-killed microbial cells (necrotrophy) present in biofilms or heat-treated water systems. Quantification by means of plate counting, real-time PCR, and flow cytometry demonstrated necrotrophic growth of L. pneumophila in water after 96 h, when at least 100 dead cells are available to one L. pneumophila cell. Compared to the starting concentration of L. pneumophila, the maximum observed necrotrophic growth was 1.89 log units for real-time PCR and 1.49 log units for plate counting. The average growth was 1.57 +/- 0.32 log units (n = 5) for real-time PCR and 1.14 +/- 0.35 log units (n = 5) for plate counting. Viability staining and flow cytometry showed that the fraction of living cells in the L. pneumophila population rose from the initial 54% to 82% after 96 h. Growth was measured on heat-killed Pseudomonas putida, Escherichia coli, Acanthamoeba castellanii, Saccharomyces boulardii, and a biofilm sample. Gram-positive organisms did not result in significant growth of L. pneumophila, probably due to their robust cell wall structure. Although necrotrophy showed lower growth yields compared to replication within protozoan hosts, these findings indicate that it may be of major importance in the environmental persistence of L. pneumophila. Techniques aimed at the elimination of protozoa or biofilm from water systems will not necessarily result in a subsequent removal of L. pneumophila unless the formation of dead microbial cells is minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号