首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two green algal species, Chlamydomonas reinhardtii and Scenedesmus obliquus, exhibited a relative maximum during the decay of luminescence, when adapted to low CO2 conditions that was not observed in high CO2 adapted cells.From the kinetics of transient changes in the level of dark fluorescence, after illumination and parallel to the luminescence maxima, it was concluded that the maximum in Scenedesmus was mainly related to a decrease in nonphotochemical quenching, whereas in Chlamydomonas the maximum was mainly related to a dark reduction of the primary PS II acceptor QA.ATP/ADP ratios from low CO2 adapted Scenedesmus showed transient high levels after a dark/light transition that was not observed in high CO2 adapted cells. After 30 s of illumination the ATP/ADP ratios however stabilized at the same steady state level as in high CO2 adapted cells.Dark addition of HCO3 - to low CO2 adapted cells of Chlamydomonas resulted in a rapid transient quenching of luminescence that was not observed in low CO2 adapted cells of neither species.It is concluded that the luminescence maxima present in both low CO2 adapted Scenedesmus and Chlamydomonas reflect adaptation of the cells to low CO2 conditions. It is further suggested that the difference in mechanistic origin of luminescence maxima in the two species reflects differences in adaptation.Abbreviations ADP adenosine-diphosphate - ATP adenosine-triphosphate - Ci inorganic carbon - FD dark fluorescence recorded under dark adapted conditions - F0 fluorescence with all reaction centers open - FV variable fluorescence - PS I photosystem I - PS II photosystem II - QA the first quinone acceptor of PS II  相似文献   

2.
The blue-light requirement for the biosynthesis of nitrite reductase and an NO2 transport system was studied in Chlamydomonas reinhardtii mutant S10. The only oxidized nitrogen species that could be taken up by this mutant was NO2, due to the presence of NO2 transport systems and the absence of high-affinity NO3 transporters. NH4+-grown cells required illumination with blue light to recover the ability to take up NO2 when resuspended in an NO2-containing NH4+-deprived medium. This blue-light- dependent recovery, which took 1 h, could be suppressed by cycloheximide, indicating that protein biosynthesis was involved. The biosynthesis of nitrite reductase took place in cell suspensions irradiated with red light, even in the absence of NO2, thus suggesting that the process requiring blue light was the biosynthesis of an NO2 transport system. Nitrite reductase-containing cells (pre-irradiated with red light) took 1 h to start consuming NO2 when they were additionally irradiated with blue light in the presence of this anion, and this process was also cycloheximide-sensitive. The NO2 transport system operated either under red plus blue light or red light only. Thus, in C. reinhardtii mutant S10 cells, blue light was only required for the biosynthesis of an NO2 transport system and not for its activity.  相似文献   

3.
Effects of red (RL) and blue (BL) light on acclimation of the unicellular green alga Chlamydomonas reinhardtii to the low level of ambient CO2 were studied. C. reinhardtii cells grown at 5% CO2 and under white light (170 μmol/(m2s)) had a relatively low activity of extracellular carbonic anhydrase (CA), a low affinity for dissolved inorganic carbon, and a low rate of photosynthesis under CO2-limiting conditions. These cells readily started acclimation to the low CO2 concentration when they were exposed to atmospheric air (~ 0.03% CO2) under RL or BL (150 μmol/(m2 s) each). The acclimation was manifested in a significant increase in the CO2-limited rate of photosynthesis, the affinity for dissolved inorganic carbon, and the extracellular CA activity with no difference between RL-and BL-cells. Independently of light quality, the acclimation was completed for 5–7 h after cell exposure to air. As is evident from RL-and BL-dependent changes in the sum of chlorophylls and chlorophyll a/b ratio, transfer of C. reinhardtii cells to air and RL or BL triggered also the process of algal photosynthetic adaptation to light quality. However, this process did not interfere with acclimation to low CO2 because started 4 h later. On the basis of similarity in the low CO2-induced changes under RL and BL, it is concluded that acclimation of C. reinhardtii to CO2-limiting conditions does not depend on light quality.  相似文献   

4.
Abstract: Clusia multiflora H. B. K., an obligate C3 species and Clusia minor L. a C3/CAM intermediate species, are two physio-types of a similar morphotype. They can sympatrically occupy secondary savanna sites exposed to high insolation in the tropics. In C. multiflora severe stress, i.e., switching shade-grown plants to high light plus drought, resulted in leaves browning or yellowing and becoming necrotic. However, in long-term light stress C. multiflora was able to grow new leaves with their photosynthetic apparatus fit for high light conditions. Shade-grown C. minor readily overcame switching to high light conditions and drought, responding by a rapid change from C3 photosynthesis to CAM. Decreasing soil led to increased abscisic acid levels in the leaves of C. minor, however CAM induction was not directly related to this and was mainly determined by increased PPFD. Both species were capable of rapid accumulation of zea-xanthin for acute photoprotection following high PPFD exposure. The maximum capacity for zeaxanthin accumulation was larger in C. minor, but under steady high PPFD it only partially made use of this capacity, relying on high internal CO2 concentrations of Phase Ill of CAM, in addition to zeaxanthin, for acute photo-protection. Thus, by different means the two species perform well under high light conditions. However, C. multiflora needs time for development of adapted leaves under such stress conditions while the more flexible C. minor can readily switch from low light to high light conditions.  相似文献   

5.
Isolated intact chloroplasts from wall-less mutants of Chlamydomonas reinhardtii accumulate inorganic carbon (Ci) from the medium provided the cells had been adapted to low CO2 photoautotrophic growth conditions. Chloroplasts from cultures grown on high (5%) CO2 or photoheterotrophically with acetate did not accumulate inorganic carbon. Chloroplast Ci accumulation from low CO2 grown cells was light dependent and was inhibited by uncouplers and inhibitors of electron transport. In a model for Ci accumulation by Chlamydomonas, it is proposed that CO2 diffuses into the cell and Ci accumulation occurs in the chloroplast.  相似文献   

6.
Some reports indicate that mesophyll conductance (g m) to carbon dioxide varies greatly with the substomatal carbon dioxide concentration (C i) during the measurement, while other reports indicate little or no change in g m with C i. I used the oxygen sensitivity of photosynthesis to determine the response of g m to C i over the range of about 100 to 300 μmol mol−1 C i at constant temperature in common bean (Phaseolus vulgaris) and soybean (Glycine max) grown over a range of temperatures and photosynthetic photon flux densities (PPFD). In soybean grown and measured at high PPFD there was only a slight, approximately 15% decrease in g m with C i over the range of 100 to 300 μmol mol−1. With lower PPFD during the measurement of g m, and especially with low PPFD during plant growth, there was a larger decrease in g m with C i in soybean. In common bean, the same range in C i resulted in about a 60% decrease in g m for plants grown and measured at high PPFD, with an even larger decrease for plants at low growth or measurement PPFD. Growth temperatures of 20 to 30°C had little influence on the response of g m to C i or its absolute value in either species. It is concluded that these two species differed substantially in the sensitivity of g m to C i, and that PPFD but not temperature during leaf development strongly affected the response of g m to C i.  相似文献   

7.
Acclimation to rapidly fluctuating light, simulating shallow aquatic habitats, is altered depending on inorganic carbon (Ci) availability. Under steady light of 50 μmol photons·m?2·s?1, the growth rate of Synechococcus elongatus PCC7942 was similar in cells grown in high Ci (4 mM) and low Ci (0.02 mM), with induced carbon concentrating mechanisms compensating for low Ci. Growth under fluctuating light of a 1‐s period averaging 50 μmol photons·m?2·s?1 caused a drop in growth rate of 28%±6% in high Ci cells and 38%±8% in low Ci cells. In high Ci cells under fluctuating light, the PSI/PSII ratio increased, the PSII absorption cross‐section decreased, and the PSII turnover rate increased in a pattern similar to high‐light acclimation. In low Ci cells under fluctuating light, the PSI/PSII ratio decreased, the PSII absorption cross‐section decreased, and the PSII turnover remained slow. Electron transport rate was similar in high and low Ci cells but in both was lower under fluctuating than under steady light. After acclimation to a 1‐s period fluctuating light, electron transport rate decreased under steady or long‐period fluctuating light. We hypothesize that high Ci cells acclimated to exploit the bright phases of the fluctuating light, whereas low Ci cells enlarged their PSII pool to integrate the fluctuating light and dampen the variation of the electron flux into a rate‐restricted Ci pool. Light response curves measured under steady light, widely used to predict photosynthetic rates, do not properly predict photosynthetic rates achieved under fluctuating light, and exploitation of fluctuating light is altered by Ci status.  相似文献   

8.
Photosynthesis was characterized for the unicellular green alga Coccomyxa sp., grown at low inorganic carbon (Ci) concentrations, and compared with Chlamydomonas reinhardtii, which had been grown so that the CO2 concentrating mechanism (CCM) was expressed, and with protoplasts isolated from the C3 plant barley (Hordeum vulgare). Chlamydomonas had a significantly higher Ci-use efficiency of photosynthesis, with an initial slope of the Ci-response curve of 0.7 mol(gChl)−1 h−1 mmol Cim−3)−1, as compared to 0.3 and 0.23 mol(gChl)−1 h−1 (mmol Cim−3)−1 for Coccomyxa and barley, respectively. The affinity for Ci was also higher in Chlamydomonas, as the half maximum rate of photosynthesis [K0.5 (Ci)] was reached at 0.18 mol m−3, as compared to 0.30 and 0.45 mol m−3 for Coccomyxa and barley, respectively. Ethoxyzolamide (EZ), an inhibitor of the enzyme carbonic anhydrase (CA) and the CCM, caused a 17-fold decrease in the initial slope of the photosynthetic Cj-response curve in Chlamydomonas, but only a 1.5- to two-fold decrease in Coccomyxa and barley. The photosynthetic light-response curve showed further similarities between barley and Coccomyxa. The rate of bending of the curve, described by the convexity parameter, was 0.99 (sharp bending) and 0.81–0.83 (gradual bending) for cells grown under low and high light, respectively. In contrast, the maximum convexity of Chlamydomonas was 0.85. The intrinsically lower convexity of Chlamydomonas is suggested to result from the diversion of electron transport from carbon fixation to the CCM. Taken together, these results suggest that Coccomyxa does not possess a CCM and due to this apparent lack of a CCM, we propose that Coccomyxa is a better cell model system for studying C3 plant photosynthesis than many algae currently used.  相似文献   

9.
10.
Pulses of blue light cause stimulation of red light saturated photosynthesis in Ectocarpus siliculosus, because blue light activates the operation of a pathway for inorganic carbon (Ci) acquisition by inducing the mobilization of CO2 from an intermediate metabolite. In the absence of exogenous Ci, photosynthetic rates roughly equal those of CO2 release by respiration. In seawater of pH 9·5 (2·3 mol m–3 total Ci, but concentrations of free CO2 below 0·2 mmol m–3), photosynthesis was clearly above these rates, although they were only ≈ 30% of those in normal seawater (≈ pH 8). The degree and the time course of the stimulations of photosynthesis by pulses of blue light were unaltered at high pH. Essentially the same characteristics were found after buffering or in the presence of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity. Therefore, it is concluded that Ectocarpus is able to directly take up HCO3 in addition to CO2 (uptake of CO32– cannot be excluded). The dependence of photosynthesis on Ci at pH 9·5 was biphasic, with Ci below 0·2 mol m–3 having no effect at all. In Ci-free seawater, the shapes of the stimulations after blue light pulses differed for pH 6, pH 8 and pH 9·5. At low pH, only the fast peak (maximum ≈ 5 min after blue light) was detected, whereas at high pH mainly the slow peak (maximum ≈ 20 min after blue light) was observed. At the intermediate pH 8, both peaks were present. As inhibition of total carbonic anhydrase by ethoxyzolamide brought out the fast peak of the stimulations at pH 9·5 it is concluded that the fast component was due to a transient disequilibrium of an intracellular pool of Ci which, after blue light, was fed by CO2 released from the postulated storage intermediate.  相似文献   

11.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

12.
The influence of red, blue, green, and white light on growth and photosynthetic rates, carbon metabolism, and rates of release of extracellular compounds in the freshwater alga Chlamydomonas reinhardtii Dangeard was examined. Relative growth constants were 0.28, 0.32, 0.40, and 0.41 in green, white, blue, and red light, respectively. Photosynthetic rates were higher in white, blue, or red than in green light of the same intensity. More than 66% of the 14CO2 assimilated by cells grown under blue or green light was incorporated into the ethanol-insoluble fraction, compared with about 50% in cells grown under white or red light. The percentage of sugars in this fraction was significantly higher in cells grown under green or red light than in cells cultured in white or blue light, while the percentage of proteins was highest in blue light. Light quality also influenced the composition of the ethanol-soluble fraction. The percentage of organic acids was highest in cells grown in green and white light, while amino acids were highest in blue and green cultures. The percentage of ethanol-soluble sugars was greatest in cultures grown in blue and red light. The percentage release of dissolved organic carbon into the medium was highest in white light and lowest in blue or red light. The nature of the extracellular products varied according to the quality of light under which the cells were cultured, but had no consistent relation to the nature or concentration or components in the ethanol-soluble fraction.  相似文献   

13.
The effect of CO2 concentration on the rate of photorespiratory ammonium excretion and on glutamine synthetase (GS) and carbonic anhydrase (CA) isoenzymes activities has been studied in Chlamydomonas reinhardtii cw-15 mutant (lacking cell wall) and in the high CO2-requiring double mutant cia-3/cw-15 (lacking cell wall and chloroplastic carbonic anhydrase). In cw-15 cells, both the extracellular (CAext) and chloroplastic (CAchl) CA activities increased after transferring cells from media bubbled with 5% CO2 in air (v/v, high-Ci cells) to 0.03% CO2 (low-Ci cells), whereas in cia-3/cw-15 cells only the CAext was induced after adaptation to low-Ci conditions and the CAchl activity was negligible. During adaptation to low-Ci conditions in the presence of 1 mM of l-methionine-D,L-sulfoximine (MSX), a specific inhibitor of GS activity, both mutant strains excreted photorespiratory ammonium into nitrogen free medium. In addition, the ammonium excretion rate by cw-15 in the presence of MSX was lower in cells grown and kept at 5% CO2 than in high-Ci cells adapted to 0.03% CO2. The double mutant cia-3/cw-15 excreted photorespiratory ammonium at a higher rate than did cw-15. Total GS activity (GS-1 plus GS-2) increased during adaptation to 0.03% CO2 in both strains of C. reinhardtii. However, only the activity GS-2, which is located in the chloroplast, increased during the adaptation to low CO2, whereas the cytosolic GS-1 levels remained similar in high and low-Ci cells. We conclude that: (1) cia-3/cw-15 cells lack chloroplastic CA activity; (2) in C. reinhardtii photorespiratory ammonium is refixed in the chloroplasts through the GS-2/GOGAT cycle; and (3) chloroplastic GS-2 concentration changes in response to the variation of environmental CO2 concentration.  相似文献   

14.
Abstract. The significance of blue light-stimulated stomatal conductance for carbon assimilation (A), stomatal conductance (g), intercellular CO2 (Ci), stomatal limitation of A (L), transpiration (E) and water use efficiency (W = A/E), was determined in a C4 and a C3 species. W and L were evaluated for steady-state gas exchange with constant, saturating red light (As, gs, Es), and for the integrated gas exchange above the steady state baseline induced by a single, brief pulse of blue light (Ap, gp, Ep). Sugarcane (Saccharum spp. hybrid), a C4 grass, and soybean (Glycine max) a C3 dicot, were compared. Sugarcane exhibited typical C4 behaviour, with A saturing at Ci of ca. 200 μmol mol?1, compared to >500 μmol mol?1 in soybean. Steady-state W was also considerably higher in sugarcane. The extent of stomatal opening in response to a blue light pulse, from baseline (gs) to the maximum value of conductance during the opening response (gm), was similar in the two species. More rapid opening and closing of stomata in sugarcane resulted in a smaller integrated magnitude of the conductance response (gp) than in soybean. At the peak of the blue light response, both species exhibited similar levels of L. During the response to the pulse of blue light, A and Ci increased and L decreased to a greater extent in sugarcane than in soybean. As a result, the gas exchange attributed to the stomatal response to blue light exhibited a higher ratio of Ap to Ep (Wp) in sugarcane than in soybean. This Wp was lower in both species than was the Ws associated with the steady state gas exchange. The two species did not differ in the rate of induction of photosynthetic utilization of elevated Ci. The greater stimulation of A in sugarcane was attributed to its C4 attributes of greater carboxylation efficiency (slope of the A versus Ci relationship), lower gs and prevailing Ci,s, and greater Ls under steady-state red illumination. Despite saturation of A at low levels of Ci in C4 species, the gas exchange attributed to the stomatal response to blue light decreased L and contributed considerably to carbon acquisition, while maintaining the high level of W associated with C4 metabolism.  相似文献   

15.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

16.
Mass-spectrometric measurements of 18O exchange from 13C18O2 were used to follow changes in the intracellular carbonic anhydrase (CA) activity of cells of Chlamydomonas reinhardtii Dang, wild type and the ca-1 mutant during adaptation to air. With intact cells as well as with crude homogenates total intracellular CA activity in wild-type cells increased six to tenfold within 4 h after transferring cells from 5% CO2 (high inorganic carbon, Ci) to ambient air (air adapted). After that time the activity slowly declined to a level similar to that observed with cells which had been continuously grown in air (low-Ci grown). In the ca-1 mutant, total CA was induced to a similar extent during 4 h of adaptation; however, absolute activities were two to three times lower in ca-1 than in the wild type regardless of the CO2 supply. When crude extracts from wild-type cells were separated into soluble and insoluble fractions, each fraction contained about half of the internal CA activity. Within 4 h of adaptation, both forms of CA activity were simultaneously enhanced by nine to tenfold, reaching levels similar to those found in low-Cigrown cells. In contrast, in the ca-1 mutant the soluble CA activity was only enhanced by about eightfold while the level of insoluble CA was very low even in low-Ci cells. After isolation of intact chloroplasts from wild-type cells and further subfractionation, around 70–80% of total chloroplastic CA activity was found to be in the insoluble fraction while 17–20% remained in the soluble fraction. Both chloroplastic CA activities were inducible within the first 4 h of adaptation to air, with each of them being eight to ten times higher than in high-Ci algae. After that time their activities were similar to the corresponding CA values in low-Ci-grown cells. In contrast, plastids from high-Ci cells of the ca-1 mutant showed 40% less insoluble-CA activity compared to the wild type and this insoluble-CA activity was not increased at all by transferring algae to air. In addition, no soluble-CA activity was detected in chloroplasts from high-Ci and air-adapted ca-1 cells. These results indicate the presence of three intracellular CA activities in high-Ci air-adapted and low-Ci cells of the wild type and that two of them are associated with the chloroplasts. All three activities are completely induced within the first 4 h of adaptation to air in wild-type cells. In contrast, it was not possible to induce any of the chloroplastic CA activities in the ca-1 mutant. The possibility that the soluble chloroplastic CA represents a pyrenoid-located CA is discussed.This work is dedicated to Professor A. Wild on the occasion of his 65th birthday  相似文献   

17.
Inorganic phosphate (Pi) is an essential ion involved in diverse cellular processes including metabolism. Changes in cellular metabolism upon long term adaptation to Pi limitation have been reported in E. coli. Given the essential role of Pi, adaptation to Pi limitation may also result in metabolic changes in animal cells. In this study, we have adapted CHO cells producing recombinant IgG to limiting Pi conditions for 75 days. Not surprisingly, adapted cells showed better survival under Pi limitation. Here, we report the finding that such cells also showed better growth characteristics compared to control in batch culture replete with Pi (higher peak density and integral viable cell density), accompanied by a lower specific oxygen uptake rate and cytochrome oxidase activity towards the end of exponential phase. Surprisingly, the adapted cells grew to a lower peak density under glucose limitation. This suggests long term Pi limitation may lead to selection for an altered metabolism with higher dependence on glucose availability for biomass assimilation compared to control. Steady state U‐13C glucose labeling experiments suggest that adapted cells have a higher pyruvate carboxylase flux. Consistent with this observation, supplementation with aspartate abolished the peak density difference whereas supplementation with serine did not abolish the difference. This supports the hypothesis that cell growth in the adapted culture might be higher due to a higher pyruvate carboxylase flux. Decreased fitness under carbon limitation and mutations in the sucABCD operon has been previously reported in E. coli upon long term adaptation to Pi limitation, suggestive of a similarity in cellular response among such diverse species. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:749–758, 2017  相似文献   

18.
Omata T  Ogawa T 《Plant physiology》1986,80(2):525-530
When cells of Anacystis nidulans strain R2 grown under high CO2 conditions (3%) were transferred to low CO2 conditions (0.05%), their ability to accumulate inorganic carbon (Ci) increased up to 8 times. Cytoplasmic membranes (plasmalemma) isolated at various stages of low CO2 adaptation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase of a 42-kilodalton polypeptide in the cytoplasmic membrane during adaptation; a linear relationship existed between the amount of this polypeptide and the Ci-accumulating capability of the cells. No significant changes were observed during this process in the amount of other polypeptides in the cytoplasmic membranes or in the polypeptide profiles of the thylakoid membranes, cell walls, and soluble fractions. Spectinomycin, an inhibitor of protein biosynthesis, inhibited both the increase of the 42-kilodalton polypeptide and the induction of high Ci-accumulating capability. The incorporation of [35S]sulfate into membrane proteins was greatly reduced during low CO2 adaptation. Radioautograms of the 35S-labeled membrane proteins revealed that synthesis of the 42-kilodalton polypeptide in the cytoplasmic membrane was specifically activated during the adaptation, while that of most other proteins was greatly suppressed. These results suggested that the 42-kilodalton polypeptide in the cytoplasmic membrane is involved in the active Ci transport by A. nidulans strain R2 and its synthesis under low CO2 conditions leads to high Ci-transporting activity.  相似文献   

19.
Root chilling has been shown to inhibit shoot photosynthesis yet the mechanism for such an action is not clearly understood. A study was designed to elucidate the mechanism by which root cooling may affect net photosynthesis. Roots of Artemisia tridentata seedlings were cooled from 20°C to 5°C while their shoot temperature remained at 20°C. This was conducted at two light levels (700 and 1300 μmol m?2 s?1). The time course of shoot net photosynthesis (A), stomatal conductance to water vapor (gs), intercellular CO2 concentration (Ci) and root respiration (Rs) were determined on a whole-plant basis. Root cooling caused a 25% reduction in A at high PPFD, which was preceded by more than 50% reduction of gs and about 10% reduction in Ci. A versus Ci curves for single branches showed no difference between cold and warm soil temperatures, although stomatal conductance was lower for the lower soil temperature. This suggests that a stomatal limitation may have been involved in the inhibition of A. Furthermore, a concomitant decrease of as much as 23% in leaf relative water content (RWC) indicated that root cooling affected stomatal closure due to decreased water supply to the foliage. At lower PPFD, root cooling did not cause a decrease in A of the whole plant despite a moderate drop in gs, Ci and RWC. Cold soil also led to a substantial and rapid reduction in root respiration rate (Rs) regardless of the light level.  相似文献   

20.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 intracellular carbonic anhydrase (CA) activity was investigated in the unicellular green algae Dunaliella tertiolecta and Chlamydomonas reinhardtii which were either grown on air enriched with 5% CO2 (high-Ci cells) or on air (low-Ci cells). In D. tertiolecta high- and low-Ci cells had detectable levels of internal CA activity when measured under in-vivo conditions and this activity could be split up into three distinct forms. One CA was not associated with the chloroplasts, while two isozymes were found to be located within the plastids. The activities of all intracellular CAs were always about twofold higher in low than in high-Ci cells of D. tertiolecta and the chloroplastic enzymes were completely induced within 4 h of adaptation to air. One of the chloroplastic CAs was found to be soluble the other was insoluble. In addition to the physical differences, MgSO4 in vitro caused a more than twofold stimulation of the soluble activity while the insoluble form of CA remained rather unaffected. In C. reinhardtii, MgSO4 increased the soluble CA activity by 346% and the concentration of MgSO4 required for half-maximum stimulation was between 10 and 15 mM. Again, the insoluble CA activity was not affected by MgSO4. Furthermore, the soluble isoenzyme was considerably more sensitive to ethoxyzolamide, a potent inhibitor of CA, than the insoluble enzyme. The concentration of inhibitor causing 50% inhibition of soluble CA activity was 110 and 85 μM ethoxyzolamide for D. tertiolecta and C. reinhardtii, respectively. From these data we conclude that the two chloroplast-associated CAs are distinct enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号