首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hedgehog is a regulatory protein during embryonic development and its abnormal activation in adult tissues has been implicated in tumorigenesis within sites where epithelial–mesenchymal interactions take place. In the prostate, Hedgehog signaling activation was observed during advanced cancer progression and metastasis, but whether Hedgehog overexpression can initiate prostate tumorigenesis remains unknown. We introduced a Hedgehog-expressing vector by intra-prostate injection and electroporation to address the effects of Hedgehog overexpression. The manipulation caused lesions with characteristic prostatic intraepithelial neoplasia or even prostatic cancer (CaP) phenotypes within 30 days, with Hedgehog overexpression demonstrated by immunohistochemistry and Western blot detections. The tumorigenic phenotypes were confirmed by discontinuity of basal cell marker p63, mix-up of CK-8/CK-18 positive epithelial cells in the stoma as well as absence of α-SMA positive fibro-muscular sheath. Comparable Hedgehog overexpression was found in human CaP specimen. Thus, Hedgehog overexpression induced prostate tumorigenesis starting from the normal status. Furthermore, a mouse prostate cancer model induced by Hedgehog overexpression was established and may be used for testing novel therapeutical approaches targeting at Hedgehog signaling pathway.These authors have contributed equally to this work.  相似文献   

2.
Deciphering molecular pathways involved in the early steps of prostate oncogenesis requires both in vitro and in vivo models derived from human primary tumors. However the few recognized models of human prostate epithelial cancer originate from metastases. To date, very few models are proposed from primary tumors and immortalizing normal human prostate cells does not recapitulate the natural history of the disease. By culturing human prostate primary tumor cells onto human epithelial extra-cellular matrix, we successfully selected a new prostate cancer cell line, IGR-CaP1, and clonally-derived subclones. IGR-CaP1 cells, that harbor a tetraploid karyotype, high telomerase activity and mutated TP53, rapidly induced subcutaneous xenografts in nude mice. Furthermore, IGR-CaP1 cell lines, all exhibiting negativity for the androgen receptor and PSA, express the specific prostate markers alpha-methylacyl-CoA racemase and a low level of the prostate-specific membrane antigen PSMA, along with the prostate basal epithelial markers CK5 and CK14. More importantly, these clones express high CD44, CD133, and CXCR4 levels associated with high expression of α2β1-integrin and Oct4 which are reported to be prostate cancer stemness markers. RT-PCR data also revealed high activation of the Sonic Hedgehog signalling pathway in these cells. Additionally, the IGR-CaP1 cells possess a 3D sphere-forming ability and a renewal capacity by maintaining their CSC potential after xenografting in mice. As a result, the hormone-independent IGR-CaP1 cellular clones exhibit the original features of both basal prostate tissue and cancer stemness. Tumorigenic IGR-CaP1 clones constitute invaluable human models for studying prostate cancer progression and drug assessment in vitro as well as in animals specifically for developing new therapeutic approaches targeting prostate cancer stem cells.  相似文献   

3.
Hedgehog (Hh) signaling is conserved from flies to humans and is indispensable in embryogenesis and adulthood. Patched (Ptc) encodes a receptor for Hh ligands and functions as a tumor suppressor. PTCH1 mutations in humans are found in basal cell carcinoma (BCC) and irradiated Ptc1(+/-) mice recapitulate this phenotype. However, due to embryonic lethality associated with the Ptc1 null mutation, its normal function in embryonic and adult skin remains unknown. Here we describe the epidermal phenotypes of a spontaneous and viable allele of Ptc1, Ptc1(mes), in which the C-terminal domain (CTD) is truncated. Ptc1(mes/mes) embryos display normal epidermal and hair follicle development. Postnatal Ptc1(mes/mes) skin displays severe basal cell layer hyperplasia and increased proliferation, while stratification of the suprabasal layers is mostly normal. Interestingly, truncation of the Ptc1 CTD did not result in skin tumors. However, long term labeling studies revealed a greater than three-fold increase in label-retaining cells in the interfollicular epidermis of Ptc1(mes/mes) adults, indicating possible expansion of the epidermal stem cell compartment. Increased expression of regulators of epidermal homeostasis, c-Myc and p63, was also observed in Ptc1(mes/mes) adult skin. These results suggest that the CTD of Ptc1 is involved in regulating epidermal homeostasis in mature skin.  相似文献   

4.
目的:通过表面标志分选法富集乳腺癌干细胞,并初步鉴定其肿瘤干细胞特性。方法:采用流式细胞分选术从人乳腺癌细胞系MCF-7中分选CD44+CD24-/low乳腺癌干细胞,并进行干细胞比例分析;用免疫荧光法检测、比较分选获得的细胞和对照细胞的干性和分化标记物Oct-4、SOX-2、CK-18和α-SMA的表达状态。结果:分选获得的CD44+CD24-/low乳腺癌干细胞阳性比例达90%以上;免疫荧光检测结果显示,CD44+CD24-/low细胞亚群比non-CD44+CD24-/low细胞亚群高表达干细胞转录因子Oct-4、SOX-2,低表达分化因子CK-18、α-SMA;体外实验表明,CD44+CD24-/low细胞亚群具有更强的成球生长能力,并具有双向分化潜能。结论:CD44+CD24-/low表面标记物分选的方法可以富集高纯度的乳腺癌干细胞,且呈现干性因子Oct-4和SOX-2高表达。  相似文献   

5.
Constitutive activation of hedgehog signaling, often caused by PTCH1 inactivation and leading to inappropriate activation of GLI target genes, is crucial for the development of several human tumors including basal cell carcinoma of the skin and medulloblastoma. The PTCH1 gene at 9q22 is also considered as a candidate tumor suppressor in transitional cell carcinoma (TCC), of which >50% show LOH in this region. However, only rare mutations have been found in PTCH1. We have therefore investigated GLI-dependent promoter activity and expression of hedgehog pathway components in TCC cell lines and proliferating normal urothelial cells. Normal urothelial cells cultured in serum-free medium, but not TCC lines exhibited low, but significant promoter activity under standard growth conditions. Accordingly, GLI1-3 and PTCH1 mRNAs were expressed at moderate levels, and sonic hedgehog (SHH) mRNA expression was low to undetectable. In co-transfection experiments GLI1 increased promoter activity significantly in one TCC line and further in normal urothelial cells, but less strongly in other TCC lines. Expression patterns of GLI factor mRNAs did not correlate with inducibility. No significant effects of SHH or cyclopamine on proliferation were observed, ruling out autocrine effects. However, SHH induced GLI-dependent promoter activity in normal urothelial cells. Taken together, our data suggest that the hedgehog pathway is weakly active in normal adult urothelial cells and of limited importance in TCC.  相似文献   

6.
Several long noncoding RNAs (lncRNAs) have been identified in various malignant tumors and determined to contribute to the process of tumorigenesis, including that of colorectal cancer (CRC). Cancer stem cells (CSCs) have been demonstrated to promote the expansion and maintain the invasion and metastasis of cancer cells, owing to their self-renewal capacity. However, the underlying modulation mechanism of CSC-associated lncRNAs in CRC remains largely unclear. Using integrated bioinformatic analysis, we identified a novel lncRNA (lncRNA-cCSC1) that is highly expressed in CRC and colorectal cancer stem cells (CRCSCs). The biological functions of lncRNA-cCSC1 were assessed in vitro and vivo through the silencing or upregulation of its expression. The depletion of lncRNA-cCSC1 markedly inhibited the self-renewal capacity of the CRCSCs and reduced their drug resistance to 5-fluorouracil. In contrast, lncRNA-cCSC1 overexpression increased the self-renewal effect. Furthermore, aberrant lncRNA-cCSC1 expression resulted in a concomitant alteration of smoothened (SMO) and GLI family zinc finger 1 (Gli1) expression in the Hedgehog (Hh) signaling pathway. Our study is the first to identify a novel lncRNA-cCSC1 in CRC and to indicate that it may regulate CSC-like properties via the Hh signaling pathway. Thus, lncRNA-cCSC1 could be a potential biomarker and promising therapeutic target for CRC.  相似文献   

7.
8.
9.
10.
It is hypothesized that cancer stem cells arise either from normal stem cells or from progenitor cells that have gained the ability to self-renew. Here we determine whether mammary cancer stem cells can be isolated by using antibodies that have been used for the isolation of normal mammary stem cells. We show that BRCA1 mutant cancer cell lines contained a subpopulation of CD24+CD29+ or CD24+CD49f+ cells that exhibited increased proliferation and colony forming ability in vitro, and enhanced tumor-forming ability in vivo. The purified CD24+CD29+ cells could differentiate and reconstitute the heterogeneity found in parental cells when plated as a monolayer. Under low-attachment conditions, we detected “tumorspheres” only in the presence of double positive cells, which maintained their ability to self-renew. Furthermore, CD24+CD29+ cells could form tubular structures reminiscent of the mammary ductal tree when grown in three-dimensional cultures, implying that these cancer cells maintain some of the characteristics of the normal stem cells. Nevertheless, they could still drive tumor formation since as low as 500 double positive cells immediately after sorting from BRCA1 mutant primary tumors were able to form tumors with the same heterogeneity found in the original tumors. These data provide evidence that breast cancer stem cells originate from normal stem cells and advance our understanding of BRCA1-associated tumorigenesis with possible implications for future cancer treatment.  相似文献   

11.
12.
The Hedgehog signaling pathway regulates the development and function of numerous tissues and when mis-regulated causes tumorigenesis. To assess the role of a deregulated Hedgehog signaling pathway in the mammary gland we targeted the expression of the Hedgehog effector protein, GLI1, to mammary epithelial cells using a bigenic inducible system. A constitutively active Hedgehog signaling pathway resulted with 100% penetrance in an undifferentiated mammary lobuloalveolar network during pregnancy. GLI1-expressing transgenic females were unable to lactate and milk protein gene expression was essentially absent. The inability to lactate was permanent and independent of continued GLI1 transgene expression. An increased expression of the GLI1 response gene Snail coupled to reduced expression of E-cadherin and STAT5 in the transgenic mammary gland provides a likely molecular explanation, underlying the observed phenotypic changes. In addition, remodeling of the mammary gland after parturition was impaired and expression of GLI1 was associated with accumulation of cellular debris in the mammary ducts during involution, indicating a defect in the clearance of dead cells. Areas with highly proliferative epithelial cells were observed in mammary glands with induced expression of GLI1. Within such areas an increased frequency of cells expressing nuclear Cyclin D1 was observed. Taken together the data support the notion that correct regulation of Hedgehog signaling within the epithelial cell compartment is critical for pregnancy-induced mammary gland development and remodeling.  相似文献   

13.
14.
Cancer stem cells are undifferentiated cancer cells that have self-renewal ability, a high tumorigenic activity, and a multilineage differentiation potential. MicroRNAs play a critical role in regulating gene expression during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer stem cells (GCSCs). The stem cell marker, CD44, was used to sort GCSCs by fluorescence-activated cell sorting. We found that CD44 (+) cells have higher invasiveness and form more number of sphere colonies than CD44 (−) cells. Quantitative real-time polymerase chain reaction (PCR) revealed that the miR-7-5p expression was remarkably downregulated in GCSCs but was significantly increased in the methionine-deprived medium. The downregulation of miR-7-5p results from the increased DNA methylation in the promoter region using the methylation-specific PCR. Overexpression of miR-7-5p reduced the formation of colony and decreased the invasion of GCSCs through targeting Smo and Hes1 and subsequent repressing Notch and Hedgehog signaling pathways in vitro. Notably, upregulating miR-7-5p inhibited the growth of tumor in the xenograft model. Hence, these data demonstrated that miR-7-5p represses GCSC invasion through inhibition of Smo and Hes1, which provides a potential therapeutic target of gastric cancer treatment.  相似文献   

15.
16.
Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.  相似文献   

17.
Since Notch signaling plays a critical role in stem cells and oncogenesis, we hypothesized that Notch signaling might play roles in cancer stem cells and cancer cells with a stem cell phenotype. In this study, we accessed potential functions of the Notch pathway in the formation of cancer stem cells using human glioma. Using RT-PCR, we found that most human astrogliomas of different grades expressed moderate to high level of Notch receptors and ligands. mRNA of Hes5 but not Hes1, both of which are major downstream molecules of the Notch pathway, was also detected. In human glioma cell lines BT325, U251, SHG-44, and U87, mRNA encoding different types of Notch receptors were detected, but active form of Notch1 (NIC) was only detected in SHG-44 and U87 by Western blot. Interestingly, proliferation of these two glioma cell lines appeared faster than that of the other two lines in which NIC was not detected. We have over-expressed NIC of Notch1 in SHG-44 cells by constitutive transfection to evaluate the effects of Notch signaling on glioma cells. Our results showed that over-expression of NIC in SHG-44 cells promoted the growth and the colony-forming activity of SHG-44 cells. Interestingly, over-expression of NIC increased the formation neurosphere-like colonies in the presence of growth factors. These colonies expressed nestin, and could be induced to cells expressing neuron-, astrocyte-, or oligodendrocyte-specific markers, consistent with phenotypes of neural stem cells. These data suggest that Notch signaling promote the formation of cancer stem cell-like cells in human glioma. Xue-Ping Zhang, Gang Zheng and Lian Zou are contributed equally to this study.  相似文献   

18.
19.
Immunocytochemical analysis revealed that different hepatic cell types exist during liver development: (i). cells co-expressing the stem-cell marker Thy1 and the hepatic lineage marker CK-18 and (ii). cells only expressing CK-18 (hepatoblasts). In this study we separated the different hepatic cells and analyzed gene-expression and phenotype. Fetal rat livers were digested by collagenase solution. OX43- and OX44-positive hematopoietic cells were depleted and Thy1-positive cells were enriched using Magnetic cell sorting. The different cell compartments were analyzed by RT-PCR and immunocytochemistry for Thy1, CK-18, AFP, and albumin. Hepatoblasts expressed albumin at all times and AFP in the early stages. Thy1-enriched cells expressed CK-18 at all times, albumin in the early, and AFP in the late stages. Thy1-positive cells from fetal livers express liver specific genes. The data suggest that Thy1-positive hepatic cells develop towards hepatic stem cells, and hepatoblasts develop towards mature hepatocytes of the adult liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号