首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The detergent Brij 58 has been introduced to reverse plasma membrane (PM) vesicles from the right-side-out to the inside-out form. The aim of the present work was to investigate the effect of Brij 58 on the formation of an ATP-dependent proton gradient and on the fluidity of the lipid phase of PM vesicles. PMs of corn (Zea mays L.) roots were isolated by phase-partitioning. The fluidity of PMs was estimated by measurement of fluorescence polarization with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The PMs of corn roots were relatively rigid. The hydrophobic part of the lipid bilayer was more fluid than the hydrophilic part. After intercalation of Brij 58 into the lipid bilayer the membrane fluidity changed in a concentration-dependent manner. Treatment with the detergent Brij 58 increased the degree of fluorescence polarization for TMA-DPH, while it decreased it for DPH. This effect was saturated at a detergent-to-protein ratio of 1 4 for both fluorescence probes. Although the biophysical characteristics of the membrane were changed after Brij 58 treatment, the formation of ATP-dependent proton gradients could still be measured with those vesicles. The generation of an ATP-dependent proton gradient with Brij 58-treated PM vesicles suggests that the detergent treatment indeed turned the originally right-side-out vesicles to sealed inside-out vesicles. The limits of the effect caused by Brij 58 in the context of PM enzyme activities are discussed.Abbreviations Brij 58 polyoxyethylene 20 cetyl ether - DPH 1,6-diphenyl-1,3,5-hexatriene - HCF III hexacyanoferrate (III) - ISO inside-out - PM plasma membrane - RSO right-side-out - TMA-DPH 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene  相似文献   

2.
Tonoplast H(+)-ATPase purified from cultured rice cells (Oryza sativa L. var. Boro) was reconstituted into asolectin liposomes containing steryl glucoside (SG) or acyl steryl glucoside (ASG), and the effects of SG and ASG on proton pumping, ATP-hydrolysis activity and proton permeability of the proteoliposome membranes were investigated. In the proteoliposomes containing 10 mol% SG, proton pumping and ATP-hydrolysis activity were increased to around 140% of those in SG-free proteoliposomes. In the proteoliposomes containing ASG, proton pumping and ATP-hydrolysis activity were decreased to one-tenth of those in ASG-free proteoliposomes at 15 mol% ASG; however, activity increased again slightly in the range between 20 and 40 mol% ASG. The change in proton pumping across the proteoliposome membrane is not due to a change of proteoliposome size nor to the location of the catalytic site of the tonoplast H(+)-ATPase in the proteoliposomes. SG and ASG also reduced the passive proton permeability of the proteoliposomes. These results show that SG and ASG modulate proton pumping across the tonoplast toward stimulation and depression, respectively, and they reduce the passive proton permeability of the tonoplast.  相似文献   

3.
The effect of cholesterol on the activity of the branched-chain amino acid transport system of Streptococcus cremoris was studied in membrane vesicles of S. cremoris fused with liposomes made of egg yolk phosphatidylcholine, soybean phosphatidylethanolamine, and various amounts of cholesterol. Cholesterol reduced both counterflow and proton motive force-driven leucine transport. Kinetic analysis of proton motive force-driven leucine uptake revealed that the Vmax decreased with an increasing cholesterol/phospholipid ratio while the Kt remained unchanged. The leucine transport activity decreased with the membrane fluidity, as determined by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the fused membranes, suggesting that the membrane fluidity controls the activity of the branched-chain amino acid carrier.  相似文献   

4.
Coenzyme Q-3 incorporated into the lipid bilayer at physiological concentration provided an 80% inhibition of the lipid peroxidation induced by ferrous ions. In coenzyme Q-containing vesicles, the fluorescence lifetime and the fluorescence anisotropy decay of the probe, 1,6-diphenyl-1,3,5-hexatriene, were measured in order to find out if the presence of the quinone can cause variations in the membrane organization. Our data show that two distinct populations of the probe were present and that both populations were available to quenching by coenzyme Q. The overall effects of coenzyme Q on the static and dynamic properties of the model membranes were: a very small effect in the ordering of the fatty acid chain, and a more noticeable decrease of the probe correlation time and, therefore, an increase in membrane fluidity at increasing quinone concentration. When vesicles were peroxidized in the absence of the coenzyme Q, the fluidity markedly decreased; in its presence, the fluidity was nearly unchanged. The results suggest that the antioxidant properties of coenzyme Q can be ascribed to its ability to react with free radicals. The effect on the fluidity of the lipid bilayer might imply that a requisite for a molecule to act as an efficient antioxidant could be its ability to readily diffuse within the membrane.  相似文献   

5.
The effect of lead acetate on the physical state of membrane lipids in human erythrocytes in vitro was studied using the lipophilic fluorescence probe 1,6-diphenyl-1,3,5-hexatriene and spin probes 16-doxyl-stearate and iminoxyl palmitic acid. It was shown that 2-10 microM lead acetate causes an increase in both intensity and polarization of fluorescence of 1,6-diphenyl-1,3,5-hexatriene, indicating changes in the microviscosity of the lipid bilayer of erythrocyte membranes. Judging from the parameters of EPR spectra of 16-doxyl stearate and iminoxyl palmitic acid incorporated into erythrocyte membranes, 2-10 microM lead acetate increases the heterogeneity of the lipid bilayer in surface and deep hydrophobic layers of the erythrocyte membrane.  相似文献   

6.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

7.
Gamma-radiation-induced oxidative damage in unilamellar dipalmitoylphosphatidylcholine liposomes was investigated using a fluorescence technique. Liposomal changes in permeability induced by gamma radiation were monitored by measuring the leakage of pre-encapsulated 6-carboxyfluorescein, and alterations in lipid bilayer fluidity were determined by 1,6-diphenyl-1,3,5-hexatriene fluorescence polarization. The changes in permeability and fluidity in the bilayer were found to be dependent on the radiation dose in a biphasic fashion. The results are interpreted in terms of lipid bilayer fluidization after exposure to doses up to 1 kGy, but rigidization of the bilayer at higher doses. These results indicate a relationship between alterations in permeability and fluidity in the lipid bilayer after irradiation. The vesicles were protected significantly against radiation-induced oxidative damage in the presence of alpha-tocopherol and ascorbic acid. Radiation-induced changes in the permeability of the liposomes after exposure to gamma radiation and their modification by antioxidants indicate the involvement of a free radical mechanism in the production of damage, which may offer new insights in to the modification of cellular radiosensitivity by modulation of membrane damage.  相似文献   

8.
Changes in membrane fluidity induced by lectin addition to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles containing synthetic glycopeptides were measured by depolarization of the fluorescent probes 8-anilino-1-naphthalenesulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH). In the present synthesized glycopeptides, N-acetylglucosamine (GlcNAc) and a tripeptide were connected by aliphatic chains of different lengths. A pyrenyl group, which is introduced to the peptide moiety, acted as a probe to characterize the distribution of glycopeptides in the membrane on the basis of its excimer formation. The glycopeptide was shown to be distributed to DPPC vesicles with the peptide moiety buried in the hydrophobic core of the lipid bilayer and the glyco moiety exposed to the outside of the membrane. By the addition of wheat germ agglutinin (WGA) to the vesicles containing the glycopeptides, intravesicular cross-linking of glycopeptides in the membrane and aggregation of vesicles were observed. The intravesicular cross-linking was antagonized by GlcNAc above the phase transition temperature. However, the dissociation of aggregation required the addition of a stronger antagonist, N,N'-diacetylchitobiose. The addition of the glycopeptide to DPPC vesicles above the phase transition temperature decreased the membrane fluidity. However, a succeeding addition of WGA caused a large increase of membrane fluidity at either the surface or the hydrophobic core of the lipid bilayer membrane. This increase of membrane fluidity was attributed to two factors by use of two kinds of antagonists having different potencies: one is a WGA-mediated cross-linking of glycopeptides in the membrane, and the other is a close contact of vesicles on aggregation.  相似文献   

9.
Fluorescent probe techniques were used to evaluate the effect of propoxycaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Propoxycaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by propoxycaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of propoxycaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of propoxycaine.HCl.  相似文献   

10.
The perturbation of the lipid bilayer structure by tamoxifen may contribute to its multiple mechanisms of anticancer action not related to estrogen receptors. This study evaluates the effect of tamoxifen on structural characteristics of model membranes using differential scanning calorimetry (DSC), fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-[trimethylammonium)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), as well as 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) generalized polarization. The comparative measurements in multilammelar vesicles (MLV) prepared from dipalmitoylphosphatidylcholine (DPPC) revealed that tamoxifen decreases the phase transition temperature (Tm) paralleled by a broadening of the phase transition profile. In large unilamellar vesicles (LUV) prepared from egg yolk phosphatidylcholine (EPC), tamoxifen increased the lipid bilayer order predominantly in the outer bilayer region. From membrane permeability measurements, we conclude that the tamoxifen-induced release of entrapped carboxyfluorescein (CF) results from a permanent bilayer disruption and the formation of transient holes in the lipid bilayer.  相似文献   

11.
Koo KI  Bae JH  Lee CH  Yoon CD  Pyun JH  Shin SH  Jeon YC  Bae MK  Jang HO  Wood WG  Yun I 《Protoplasma》2008,234(1-4):3-12
Fluorescent probe techniques were used to evaluate the effect of bupivacaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Bupivacaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by bupivacaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of bulk SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of bupivacaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of bupivacaine.HCl.  相似文献   

12.
Interaction of dolichol and dolichyl phosphate with phospholipid bilayers   总被引:1,自引:0,他引:1  
The thermotropic phase transition of dipalmitoylphosphatidylcholine vesicles reconstituted with dolichol or dolichyl phosphate was investigated as a function of the lipid-to-polyisoprenoid ratio by means of differential scanning calorimetry and fluorescence depolarization of the embedded probe 1,6-diphenyl-1,3,5-hexatriene. At the concentrations studied, dolichol and dolichyl phosphate lowered and broadened the transition temperature of dipalmitoylphosphatidylcholine bilayers. Dolichol was found to increase the motional freedom of the bilayer both below and above the transition temperature as determined by fluorescence depolarization. In contrast, low concentrations of dolichyl phosphate decreased the bilayer motional freedom below the transition temperature while high concentrations increased the motional freedom. Above the transition temperature, dolichyl phosphate decreased bilayer 'fluidity' at all concentrations. The data suggest that these polyisoprenoids perturb the bilayer lattice, with the neutral species dolichol increasing membrane 'fluidity', while dolichyl phosphate acts to 'stiffen' the membrane.  相似文献   

13.
Interactions of hydrophobically-modified poly-(N-isopropylacrylamides) (HM PNIPAM) with phospholipid liposomes were studied as a function of the lipid type, the lipid bilayer fluidity, and the polymer conformation. Fluorescence experiments monitoring non-radiative energy transfer (NRET), between naphthalene attached to the HM PNIPAM and 1,6-diphenyl-1,3,5-hexatriene (DPH) incorporated into the lipid bilayer, confirmed the direct penetration of hydrophobic anchor groups linked to the polymer into the liposome hydrophobic core. Contraction of the polymer backbone above the lower critical solution temperature (LCST) resulted in a partial withdrawal of the anchor groups from the lipid bilayer. Analysis of polymer/lipid mixtures by centrifugation and quasi-elastic light scattering (QELS) revealed the polymer-induced fission of liposomes in the liquid-crystalline state, resulting in the formation of vesicles 150–230 nm in diameter. The process is reversible and upon transition of the bilayer into the gel state these vesicles are converted into larger aggregates. According to the results of gel-filtration experiments the HM PNIPAM is in dynamic exchange between the liquid-crystalline lipid bilayer and the water solution, while the binding to the bilayer in the gel state is more static in nature. The binding constant for mixture of HM PNIPAM with DMPC liposomes, evaluated from the centrifugation experiments, was found to be 120 M−1.  相似文献   

14.
Fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and pyrene were employed in studying the effect of aminazine and triftazin versus that of imipramine on microviscosity of rat brain cortex synaptosomal membranes. Unlike imipramine, the neuroleptics decrease microviscosity of membrane's lipid bilayer. All drugs decrease fluorescence of endogenous tryptophan, but fail to change fluorescence of L-tryptophan in the solution. It is concluded that neuroleptics induce conformational perturbations in membrane-bound proteins modifying microviscosity of lipid bilayer whereas imipramine changes the surface electric charge of lipid bilayer of synaptosomal membranes.  相似文献   

15.
In the present study, the in vitro effect of polyphenol rich plant extract, flavonoid--Pycnogenol (Pyc), on erythrocyte membrane fluidity was studied. Membrane fluidity was determined using 1-[4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), 1,6-diphenyl-1,3,5-hexatriene (DPH) and 12-(9-anthroyloxy) stearic acid (12-AS) fluorescence anisotropy. After Pyc action (50 microg/ml to 300 microg/ml), we observed decreases in the anisotropy values of TMA-DPH and DPH in a dose-dependent manner compared with the untreated erythrocyte membranes. Pyc significantly increased the membrane fluidity predominantly at the membrane surface. Further, we observed the protective effect of Pyc against lipid peroxidation, TBARP generation and oxidative hemolysis induced by H2O2. Pyc can reduce the lipid peroxidation and oxidative hemolysis either by quenching free radicals or by chelating metal ions, or by both. The exact mechanism(s) of the positive effect of Pyc is not known. We assume that Pyc efficacy to modify effectively some membrane dependent processes is related not only to the chemical action of Pyc but also to its ability to interact directly with cell membranes and/or penetrate the membrane thus inducing modification of the lipid bilayer and lipid-protein interactions.  相似文献   

16.
Fluidity of the plasma membrane of Trypanosoma brucei brucei has been examined with fluorescence and electron spin resonance spectroscopy. Fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 8-anilino-1-naphthalene sulfonate and the spin label probe 5-doxyl stearate have been employed to examine fluidity under a variety of conditions. The temperature dependence of 8-anilino-1-naphthalene sulfonate polarization and of the order parameter S for 5-doxyl stearate reveals phase alterations near 30 C. 1,6-Diphenyl-1,3,5-hexatriene polarization shows that proteolysis of the surface glycoprotein with trypsin increases fluidity but treatment with human serum which is trypanocidal produces no detectable change in membrane fluidity.  相似文献   

17.
The membrane transport protein lactose permease (LacY), a member of the Major Facilitator Superfamily (MFS) containing twelve membrane-spanning segments connected by hydrophilic loops, was reconstituted in liposomes of: (i) 1,2-dimyristoyl-sn-glycero-3-phosphocoline (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in equimolar proportions; and (ii) Escherichia coli total lipid extract. The structural order of the lipid membranes, in the presence and absence of LacY, was investigated using steady-state fluorescence anisotropy. The features of the anisotropy curves obtained with 1,6-phenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluene sulfonate (TMA-DPH) evidenced: (i) the insertion of LacY into the bilayer; and (ii) a surface effect on the membranes. The most dramatic effects were observed when LacY was reconstituted in the E. coli lipid matrix. The effect of the protein on the electrostatic surface potential of each bilayer was also examined using a fluorescent pH indicator, 4-Heptadecyl-7-hydroxycoumarin (HHC). Changes in surface potential were enhanced in the presence of the substrate (i.e. lactose) only when the lipid matrices were charged. These results suggest a role for charged phospholipids (i.e. phosphatidylethanolamine or phosphatidylglycerol) in proton transfer to the amino acids involved in substrate translocation.  相似文献   

18.
Reconstitution of mitochondrial calcium transport activity requires the incorporation of membrane proteins into a lipidic ambient. Calcium uptake has been measured previously using Cytochrome oxidase vesicles. The enrichment of these vesicles with cardiolipin, an acidic phospholipid that is found only in the inner mitochondrial membrane of eukaryotic cells, strongly inhibits calcium transport, in remarkable contrast with the activation effect that cardiolipin exerts upon other mitochondrial transporters and enzymes. The relation of the inactivation of calcium transport to the physical state of the bilayer was studied by following the polarization changes of 1,6-diphenyl-1,3,5-hexatriene (DPH) and by flow cytometry in the cardiolipin-enriched liposomes with incorporated mitochondrial solubilized proteins. Non-bilayer molecular arrangements in the cardiolipin-supplemented liposomes, detected by flow cytometry, may produce the fluidity changes observed by fluorescence polarization of DPH. Fluidity changes correlate with the abolition of calcium uptake, but have no effect on the establishment of a membrane potential in the vesicles required for calcium transport activity. Changes in the membrane structure and uniporter function are observed in the combined presence of cardiolipin and calcium leading to a modified lipid configuration.  相似文献   

19.
Although the phenomenon of stimulus-response coupling in polymorphonuclear leukocytes involves a series of membrane events the influence of stimulation on membrane fluidity is to clarify. In our experiments we have used 1-(4-trimethylaminophenyl) 6-phenyl-1,3,5-hexatriene and 1,6-diphenyl-1,3,5-hexatriene fluorescence polarization technique to evaluate membrane fluidity in living polymorphonuclear leukocytes after stimulation with N-formyl-methyonil-leucyl-phenylalanine peptide which has a well defined membrane receptor on the plasma membrane. We report that polymorphonuclear leukocytes stimulation increases 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene polarization, only when colcemid, a microtubule disrupting drug, is added to polymorphonuclear leukocytes. This can be viewed as an indirect evidence that microtubules are involved in the control of polymorphonuclear leukocytes membrane fluidity. On the contrary no changes have been observed with 1,6-diphenyl-1,3,5-hexatriene. This study indicates the potential use of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene to evaluate the involvement of plasma membrane physical state during intact cell activity.  相似文献   

20.
Human placental syncytiotrophoblast basal membrane plays an important role in transfer of nutrients from the mother to the growing fetus all throughout gestation. The membrane lipid composition together with the bilayer fluidity is found to be the major index in modulation of these transport processes. In the present study, the effects of changing lipid composition on the placental basal membrane fluidity and the modulating influence of the latter on membrane enzyme and transport functions with progress of gestation,were investigated. Steady-state fluorescence analysis using 1,6-diphenyl-1,3,5 hexatriene as the probe, indicated a decrease in fluorescence anisotropy of both labeled native membrane vesicles and liposomes prepared from lipids extracted from the basal membrane vesicles, signifying increased bilayer fluidity with progress of gestation. This in turn, was successfully correlated to the lowering of cholesterol content and enhanced phospholipid concentration with a steady decrease in cholesterol/phospholipid ratio during placental development. Enhanced Na+-K+-ATPase activity and steady-state glucose uptake across basal membrane with gestational progress suggested modulation of membrane protein functions by the fluidity, which was further corroborated by the increased bilayer fluidity and enzyme activity in benzyl alcohol treated basal membrane in each gestational age group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号