首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noradrenaline (1-10 microM) inhibited Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans with an efficacy similar to that for inhibition of glucose-induced insulin secretion from intact islets. The inhibition of insulin secretion from permeabilised islets was blocked by the alpha 2-adrenoreceptor antagonist, yohimbine. Adenosine 3',5'-cyclic monophosphate (cAMP) did not relieve the noradrenaline inhibition of Ca2+-induced secretion from the permeabilised islets, although noradrenaline did not affect the secretory responses to cAMP at substimulatory (50 nM) concentrations of Ca2+. These results suggest that catecholamines do not inhibit insulin secretion solely by reducing B-cell adenylate cyclase activity, and imply that one site of action of noradrenaline is at a late stage in the secretory process.  相似文献   

2.
In isolated pancreatic acinar cells from the guinea pig stimulation of enzyme secretion by carbamoylcholine is slightly diminished in the absence of extracellular Ca. LaCl3 in a concentration, which does not influence the secretory response to carbamoylcholine, nearly completely abolishes 45Ca uptake by cells, indicating that Ca uptake is not necessary for secretion. In cells preloaded with 45CaCl2, addition of carbamoylcholine leads to an immediate release of 45Ca, which can be blocked by atropine or 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate and is not influences by LaCl3 in concentrations, which do not inhibit secretion. A similar release of 45CaCl2 from preloaded cells is obtained by addition of the mitochondrial inhibitors antimycin A, carbonylcyanide p trifluoromethoxyphenylhydrazone (FCCP), and oligomycin. Possibly due to markedly diminished ATP levels, neither antimycin A nor FCCP act as secretagogues, both compounds being inhibitors of secretion. Oligomycin, which decreases ATP levels only to 20%, stimulates secretion. Mitochondria and microsomes from pancreatic tissue are able to accumulate 45Ca. Mitochondrial 45Ca uptake can be driven by ATP or active respiration and is inhibited by NaN3, oligomycin, antimycin A or FCCP. Microsomal 45Ca uptake is ATP-dependent. NaN3 and mitochondrial inhibitors have no influence on microsomal 45Ca uptake, which is stimulated several-fold by oxalate. The results support the assumption, that in the guinea pig pancreas Ca mobilization from intracellular stores is necessary to initiate secretion. Due to their ability for an active accumulation of45Ca both mitochondria and microsomes could serve as intracellular calcium stores.  相似文献   

3.
Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+- and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1-receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5-N-ethylcarboxyamidoadenosine) at high concentration (10 microM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10 nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6-cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50 microM) can be increased by 10 microM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1-receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues.  相似文献   

4.
The role of Ca2+ in the mediation of pepsinogen secretion from frog esophagus was investigated by means of ionophore A23187 and LaCl3. The esophageal mucosa from Asian bullfrog Rana tigerina was mounted in a double-chamber system to preserve its polarity and was incubated in a medium containing 1.5 mM CaCl2. Pepsinogen secreted was measured and expressed as % of total. The basal secretion averaged 3.5%/h. Bethanechol (25 microM), dibutyryl-cAMP (10 mM), ionophore A23187 (30 microM) and 3-isobutyl-1-methylxanthine (0.1 mM) increased the secretion to 8.7, 7.4, 7.1 and 6.8%, respectively. The stimulatory effect of bethanechol and of dibutyryl-cAMP were not affected by removing the exogenous Ca2+ with EGTA. The basal secretion was, however, reduced by 50% when Ca2+ in the incubation medium was lowered to 20 microM. At this low Ca2+ concentration, ionophore A23187 not only lost its stimulatory effect but also diminished the stimulation caused by bethanechol and dibutyryl-cAMP. While LaCl3 at 1 mM had no effect on basal and bethanechol-stimulated secretion, at 10 mM it abolished the stimulation evoked by bethanechol or dibutyryl-cAMP. The conclusions are: (1) both Ca2+ and cAMP are involved in the mediation of pepsinogen secretion from frog esophagus, (2) basal secretion is dependent on extracellular Ca2+, whereas bethanechol-stimulated secretion is not, (3) in the plasma membranes of peptic cells may exist a distinct Ca2+ pool (La3+-and ionophore A23187-sensitive) which is involved in the stimulated pepsinogen secretion.  相似文献   

5.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

6.
When [3H]inositol prelabelled cultured bovine adrenal chromaffin cells were stimulated with 56 mM KCl (high K+), 300 microM carbamylcholine (CCh) or 10 microM angiotensin II (Ang II), a rapid accumulation of [3H]IP3 was observed. At the same time, high K+ or CCh induced rapid increases in 45Ca2+ uptake, but Ang II did not induce a significant 45Ca2+ uptake. The concentration-response curve for KCl-induced [3H]IP3 accumulation coincided well with that for KCl-induced 45Ca2+ uptake into the cells. Nifedipine, a Ca2+ channel antagonist, inhibited the high K(+)-induced [3H]IP3 accumulation and 45Ca2+ uptake with a similar potency. Nifedipine at a similar concentration range also inhibited CCh-induced 45Ca2+ uptake. Although nifedipine inhibited CCh-induced [3H]IP3 accumulation, the potency was approximately 300-fold less than that for the inhibition of 45Ca2+ uptake. Nifedipine failed to affect the Ang II-induced [3H]IP3 accumulation. BAY K 8644 (2 microM), a Ca2+ channel activator, plus partially depolarizing concentration of KCl (14 mM), induced 45Ca2+ uptake and [3H]IP3 accumulation. Ionomycin (1 microM and 10 microM), a Ca2+ ionophore, also induced 45Ca2+ uptake and [3H]IP3 accumulation in a concentration-dependent manner. Pretreatment of the cells with protein kinase C activator, 100 nM 12-O-tetradecanoyl phorbol-13-acetate, for 10 min, partially inhibited CCh and Ang II-induced [3H]IP3 accumulation, but failed to inhibit the high K(+)-induced accumulation. Furthermore, the effects of high K+ and Ang II on the IP3 accumulation was additive. Ang II and CCh induced a rapid and transient increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) accumulation (5 s) followed by a slower accumulation of inositol 1,3,4-trisphosphate (1,3,4-IP3). High K+ evoked an increase in 1,3,4-IP3 accumulation but obvious accumulation of 1,4,5-IP3 could not be detected. In Ca2(+)-depleted medium, high K(+)-induced [3H]IP3 accumulation was completely abolished, whereas [3H]IP3 accumulation induced by CCh and Ang II was partially inhibited. These results demonstrate the existence of the Ca2+ uptake-triggered mechanism of IP3 accumulation represented by high K+, and also the Ca2+ uptake-independent mechanism of IP3 accumulation represented by Ang II in cultured bovine adrenal chromaffin cells. Mechanism of CCh-induced IP3 accumulation has an intermediate property between those of high K+ and Ang II.  相似文献   

7.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

8.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The purpose of the present study is to clarify the effects of hypoxia on catecholamine release and its mechanism of action. For this purpose, using cultured bovine adrenal chromaffin cells, we examined the effects of hypoxia on high (55 mM) K(+)-induced increases in catecholamine release, in cytosolic free Ca2+ concentration ([Ca2+]i), and in 45Ca2+ uptake. Experiments were carried out in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). High K(+)-induced catecholamine release was inhibited by hypoxia to approximately 40% of the control value, but on reoxygenation the release returned to control levels. Hypoxia had little effect on ATP concentrations in the cells. In the hypoxic medium, [Ca2+]i (measured using fura-2) gradually increased and reached a plateau of approximately 1.0 microM at 30 min, whereas the level was constant in the control medium (approximately 200 nM). High K(+)-induced increases in [Ca2+]i were inhibited by hypoxia to approximately 30% of the control value. In the cells permeabilized by digitonin, catecholamine release induced by Ca2+ was unaffected by hypoxia. Hypoxia had little effect on basal 45Ca2+ uptake into the cells, but high K(+)-induced 45Ca2+ uptake was inhibited by hypoxia. These results suggest that hypoxia inhibits high K(+)-induced catecholamine release and that this inhibition is mainly the result of the inhibition of high K(+)-induced increases in [Ca2+]i subsequent to the inhibition of Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

10.
The 1,4-dihydropyridines (DHP) are calcium antagonists and represent a new class of drugs which act by a selective inhibition of Ca++ influx through voltage-operated calcium channels. We report the effect of nifedipine (Bay A 1040), nisoldipine (Bay K 5552) and nitrendipine (Bay E 5009) on the histamine release and on the 45Ca uptake promoted by 4-aminopyridin in mast cells. These cells treated with DHP (10(-12)-10(-3) M) activated the secretory response in a dose-dependent manner in the range of concentrations 10(-6)-10(-3) M, whereas concentrations of 10(-12)-10(-6) M did not significantly inhibit the secretion. 4-Aminopyridin, a known K+ -channel blocker, induced 45Ca uptake. Pretreatment of mast cells with DHP prior to 4-aminopyridin stimulation inhibited or stimulated 45Ca uptake depending on concentration; thus, concentrations of DHP below 10(-12) of nitrendipine and 10(-9) for nisoldipine and nifedipine were inhibitory, while higher doses potentiated 45Ca uptake. These results demonstrate a diversity of pharmacological effects of DHP on mediator secretion and 45Ca uptake in mast cells and throw into question their only properties as Ca++ antagonists.  相似文献   

11.
A cell line originating from the fetal rat aorta has been studied with respect to 45Ca2+ uptake. Kinetic experiments showed an initial rapid uptake followed by a slow linear phase; both the initial rate and the maximum uptake were increased in the presence of 55 mM potassium chloride. The calcium channel antagonists, darodipine (PY 108-068) and verapamil, inhibited both the basal and the potassium chloride stimulated uptake. Neither tetrodotoxin nor furosemide affected either basal or depolarisation induced 45Ca2+ uptake. Blockade of the Na+/K+ ATPase by ouabain and of the Ca2+ ATPase by vanadate caused a net increase in cellular 45Ca2+ accumulation.  相似文献   

12.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

13.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

14.
The pseudopeptide [Leu14-psi-CH2NH-Leu13]-bombesin inhibited 125I-GRP binding to membrane preparations of frog cerebrum and peptic cells, rat cerebral cortex and pancreas with IC50's of 44-250 nM (using 180 pM 125I-GRP). It was unable to stimulate amylase release from rat pancreatic acini, but antagonized competitively BB stimulated amylase release with an IC50 of 130 nM. By contrast the pseudopeptide stimulated pepsinogen secretion from frog esophageal peptic cells with an efficacy relative to bombesin of 36%, and with an EC50 of 30 nM. By virtue of its partial agonist activity it inhibited submaximal BB stimulated responses to a level equal to the pseudopeptide alone. Thus [Leu14-psi-CH2NH-Leu13]-BB differentiates certain BB receptors by exhibiting selective intrinsic efficacy.  相似文献   

15.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

16.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

17.
Scorpion toxins, the basic miniproteins of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick embryo heart cells. Half-maximum stimulation was obtained for 20-30 nM Na+ and 40-50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nM) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin - sensitive fast channels.  相似文献   

18.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

19.
This study was designed in an attempt to elucidate a mechanism of somatostatin inhibition of glucose-induced Ca+ uptake by rat pancreatic islets. Rat pancreatic islets were perifused with Krebs-Ringer bicarbonate (KRB) buffer containing 16.7 mM of glucose with somatostatin (2 micrograms/ml) or/and diltiazem HCl (2 x 10(-5) M). Somatostatin inhibited preferentially the early phase of glucose-induced insulin release, whereas diltiazem HCl inhibited the late one. And the concomitant presence of the submaximal concentration of somatostatin (2 micrograms/ml) and diltiazem HCl (2 x 10(-5 M) provided the completely additive inhibition of glucose-induced insulin release. Rat pancreatic islets were incubated with KRB buffer supplemented with 16.7 mM of glucose and 45CaCl2 (10 muCi/ml) for 5--60 min and the biphasic 45Ca uptake by pancreatic islets was obtained. Somatostatin (500 ng/ml-4 micrograms/ml) gave the suppressive effect on the early phase of glucose-induced 45Ca uptake, but the higher concentration (2 micrograms/ml) of somatostatin did not impair the late phase of 45Ca uptake by pancreatic islets. On the other hand, diltiazem HCl did suppress the late phase of glucose-induced 45Ca uptake dose-dependently, but did not suppress the early phase (2 x 10(-5) M). These data indicate that somatostatin suppresses the early phase of glucose-induced Ca2+ uptake preferentially to the late one and has a different action mechanism from Ca antagonist on glucose-induced insulin release.  相似文献   

20.
Members of the bombesin family of peptides potently stimulate insulin release by HIT-T15 cells, a clonal pancreatic cell line. The response to bombesin consists of a large burst in secretion during the first 30 s, followed by a smaller elevation of the secretory rate, which persists for 90 min. The aim of this study was to identify the intracellular messengers involved in this biphasic secretory response. Addition of 100 nM-bombesin to cells for 20 s increased the cellular accumulation of [3H]diacylglycerol (DAG) by 40% and that of [3H]inositol monophosphate (InsP), bisphosphate (InsP2) and trisphosphate (InsP3) by 40%, 300%, and 800%, respectively. In contrast, cyclic AMP concentrations were unaffected. Bombesin stimulation of [3H]InsP3 formation was detected at 2 s, before the secretory response, which was not measurable until 5 s. Furthermore, the potency of bombesin to stimulate [3H]InsP3 generation (ED50 = 14 +/- 9 nM) agreed with its potency to stimulate insulin release (ED50 = 6 +/- 2 nM). Consistent with its effects on [3H]InsP3 formation, bombesin raised the intracellular free Ca2+ concentration [( Ca2+]i) from a basal value of 0.28 +/- 0.01 microM to a peak of 1.3 +/- 0.1 microM by 20 s. Chelation of extracellular Ca2+ did not abolish either the secretory response to bombesin or the rise in [Ca2+]i, showing that Ca2+ influx was not required. Although the Ca2+ ionophore ionomycin (100 nM) mimicked the [Ca2+]i response to bombesin, it did not stimulate secretion. However, pretreating cells with ionomycin decreased the effects of bombesin on both [Ca2+]i and insulin release, suggesting that elevation of [Ca2+]i was instrumental in the secretory response to this peptide. To determine the role of the DAG produced upon bombesin stimulation, we examined the effects of another activator of protein kinase C, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA did not affect [Ca2+]i, but it increased insulin secretion after a 2 min lag. However, an immediate increase in secretion was observed when ionomycin was added simultaneously with TPA. These data indicate that the initial secretory burst induced by bombesin results from the synergistic action of the high [Ca2+]i produced by InsP3 and DAG-activated protein kinase C. However, activation of protein kinase C alone appears to be sufficient for a sustained secretory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号