首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex differences are present in all parts of the body, including the skeletal system. Several methods are used to analyze the sex differences of skeleton, while more recently, a new method called geometric morphometry has been used. The aim of this study was to examine the sexual dimorphism of occipital condyles on human skulls originating from the population of Bosnia and Herzegovina using the geometric morphometric method.Material and methodsThe study was conducted on 214 human skulls of known gender from Bosnian population. For analysis of sexual dimorphism of occipital condyles, we used geometric morphometry, where all the skulls were scanned to obtain three-dimensional skull models. On the obtained models, we marked anthropometric points on occipital condyles in a Landmark Editor program from which we exported data in the form NTSYS file and analyzed it in MorphoJ program.ResultsFirst principal component PC1 describes 26.917% of total variability, the second principal component PC2 describes 20.992% of total variability, while the first eight principal components together describe 100% of total variability. The greatest variability between the male skulls and female skulls was present in the anterior-posterior diameter (length of occipital condyles). Discriminant functional analysis of the shape and size of the occipital condyles was possible with 69.50% accuracy for male skulls and with 60.27% accuracy for female skulls. The size of the occipital condyles showed a statistically significant effect on sexual determination. Discriminant functional analysis of the shape of the occipital condyles without affecting size enabled the determination of gender with with 65.96% accuracy for male skulls and with 63.01% accuracy for female skulls.ConclusionAnalysis of sexual dimorphism of occipital condyles using geometric morphometry showed statistically significant differences in the shape and size of occipital condyles between the sexes. The accuracy of sex determination based on occipital condyles was higher for male gender.  相似文献   

2.
We analyzed 4 meristic and 32 morphometric cranial traits of 612 adult specimens of spotted dolphins ( Stenella attenuata ) from the eastern tropical Pacific Ocean for sexual dimorphism. Eleven 5" latitude/longitude blocks with five or more of each sex were assessed with a two-way ANOVA for sex and geographic differences. Interaction between these two factors was found for six measurements, suggesting that the degree of sexual dimorphism varies geographically for a few characters (although in no discernible geographic pattern). Sexual dimorphism was demonstrated for 23 of the 36 characters, with differences ranging from 0.00 to 5.88 percent. Females characteristically had a longer rostrum, while males generally had larger skulls overall. In terms of number of characters, the extent of sexual dimorphism demonstrated for skulls of spotted dolphins goes considerably beyond that shown for any other small delphine. A discriminant function involving a combination of 10 characters enabled us to identify correctly the sex of more than 75 percent of the specimens. A procedure for correcting specimen measurements is outlined that would enable an investigator to combine male and female specimens in geographic variation studies. A term (zwitter) is proposed for use when referring to specimens where measurements have been corrected to take into account differences between the sexes.  相似文献   

3.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

4.
Facial width-to-height ratio (FWHR), defined as the width of the face divided by the upper facial height, is a cue to behaviour. Explanations for this link often involve the idea that FWHR is sexually dimorphic, resulting from intersexual selection pressures. However, few studies have considered sexual dimorphism in skulls since the original paper on this topic, and it is possible that different explanations may be required if faces show sex differences but skulls do not. Here, meta-analyses of skulls found that men did have larger FWHR than women, although this effect was small. However, after categorising samples by ethnicity and geographical origin, meta-analyses only found evidence of sex differences in East Asians, and again, this effect was small. A re-analysis of previous studies after excluding skull samples found little evidence of sexual dimorphism in faces. Again, considering ethnicities separately, I found no differences for White samples but a medium-sized effect with East Asians, although this was not statistically significant with only three samples. Taken together, I found no reason to consider FWHR as a sexually dimorphic measure in skulls or faces, at least not universally, and so accounts based upon this assumption need rethinking if researchers are to explain the relationship between FWHR and behaviour.  相似文献   

5.
The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index −0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation.  相似文献   

6.
Fragmentary human remains compromised by different types of inhumation, or physical insults such as explosions, fires, and mutilations may frustrate the use of traditional morphognostic sex determination methods. The basicranium is protected by a large soft tissue mass comprising muscle, tendon, and ligaments. As such, the occipital region may prove useful for sex identification in cases of significantly fragmented remains. The aims of this paper are to (1) evaluate sexual dimorphism in British cranial bases by manually recorded unilateral and bilateral condylar length and width as well as intercondylar measurements and (2) develop discriminant functions for sex determination for this cranial sample. The crania selected for this study are part of the 18th-19th century documented skeletal collection of St. Bride's Church, Fleet Street, London. Adult human skulls (n = 146; male75/female71) were measured to derive statistical functions. Results indicated that expression of sexual dimorphism in the occipital condylar region within the St. Bride's population is demonstrable but low. Crossvalidated classification accuracy ranged between 69.2 and 76.7%, and sex bias ranged from 0.3 to 9.7%. Therefore, the use of discriminant functions derived from occipital condyles, especially in British skeletal populations, should only be considered in cases of fragmented cranial bases when no other morphognostic or morphometric method can be utilized for sex determination.  相似文献   

7.
Estimating the degree of sexual dimorphism is difficult in fossil species because most specimens lack indicators of sex. We present a procedure that estimates sexual dimorphism in samples of unknown sex using method-of-moments. We assume that the distribution of a metric trait is composed of two underlying normal distributions, one for males and one for females. We use three moments around the mean of the combined-sex distribution to estimate the means and the common standard deviation of the two underlying distributions. This procedure has advantages over previous methods: it is relatively simple to use, specimens need not be assigned to sex a priori, no reference to living species analogs is required, and the method provides conservative estimates of dimorphism under a variety of conditions. The method performs best when the male and female distributions overlap minimally but also works well when overlap is substantial. Simulations indicate that this relatively simple method is more accurate and reliable than previous methods for estimating dimorphism. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Students aged 6 to 20 years attending the public schools in the Northern Area of Santiago, Chile, were examined to search for the developmental origin of the large sex dimorphism in adult stature found in this population. Stature, biacromial diameter, and signs of sexual maturation were studied and comparisons were made with European samples. All of the variables showed that Chilean females reach puberty earlier than, and cease growth before Europeans, while males mature at the same pace as Europeans. It is concluded that the large sex dimorphism in adult stature found in this sample is mainly due to this earlier cessation of growth in Chilean females.  相似文献   

9.
The aims of this study were to determine whether sexual size dimorphism in fleas and gamasid mites (i) conforms to Rensch’s rule (allometry of sexual size dimorphism) and (ii) covaries with sex ratio in infrapopulations (conspecific parasites harboured by an individual host), xenopopulations (conspecific parasites harboured by a population of a given host species in a locality) and suprapopulations (conspecific parasites harboured by an entire host community in a locality). Rensch’s rule in sexual size dimorphism was tested across 150 flea and 55 mite species, whereas covariation between sexual size dimorphism and sex ratio was studied using data on ectoparasites collected from small mammalian hosts in Slovakia and western Siberia. For fleas, we controlled for the confounding effect of phylogeny. The slope of the linear regression of female size on male size was significantly smaller than 1 in fleas, but did not differ from 1 in mites. The proportion of males in flea infrapopulations significantly increased with an increase in the female-to-male body size ratio. The same was true for obligatory haematophagous mites. No relationship between sex ratio and sexual size dimorphism was found for xenopopulations of either taxon or for mite suprapopulations. However, when controlling for the confounding effect of phylogeny, a significant negative correlation between sex ratio and sexual size dimorphism was revealed for flea suprapopulations. We conclude that (i) some macroecological patterns differ between ectoparasite taxa exploiting the same hosts (allometry in sexual size dimorphism), whereas other patterns are similar (sexual size dimorphism-sex ratio relationship in infrapopulations), and (ii) some patterns are scale-dependent and may demonstrate the opposite trends in parasite populations at different hierarchical levels.  相似文献   

10.
Insight into the ontogeny of sexual dimorphism is important to our understanding of life history, ecology, and evolution in primates. This study applied a three-dimensional method, Euclidean Distance Matrix Analysis, to investigate sexual dimorphism and its diachronic changes in rhesus macaque (Macaca mulatta) skulls. Twenty-one landmarks in four functional areas of the craniofacial skeleton were digitized from macaques of known age and sex from the Cayo Santiago collections. Then, a series of mean form matrices, form difference matrices, and growth matrices were computed to demonstrate growth curves, rates and duration of growth, and sexual dimorphism within the neurocranium, basicranium, palate, and face. The inclusion of fully adult animals revealed a full profile of sexual dimorphism. Additionally, we demonstrate for the first time diachronic change in adult sexual dimorphism caused by extended growth in adult females. A quicker growth rate in males from ages 2 to 8 was offset by a longer duration of growth in adult females that resulted in diminished dimorphism between the ages of 8 and 15. Four functional areas showed different sex-specific growth patterns, and the rate and duration of growth in the anterior facial skeleton contributed most to the changing profiles of sexual dimorphism. The late maturation in size of the female facial skeleton corresponds to later and less complete fusion of facial sutures. The prolongation of growth in females is hypothesized to be an evolutionary response to high levels of intrasexual competition, as is found in other primate species such as common chimpanzees with similar colony structure and reproductive behavior. Further investigation is required to determine (1) if this phenomenon observed in craniofacial skeletons is linked to sexual dimorphism in body size, and (2) whether this diachronic change in sexual dimorphism is species specific. The changing profile of sexual dimorphism in adult rhesus macaques suggests caution in studying sexual dimorphism in fossil primate and human forms.  相似文献   

11.
12.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

13.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

14.
Sexual dimorphism in the shape of the supraorbital margin was reported by Broca and various subsequent authors, but no consistently applied, precise definition has been established. In this study of modern human skulls, the value of our definition of the sex-related difference in this area in the identification of sex from the skull was investigated. It was found that this feature can be assessed reliably, is strongly related to sex, and is independent of the side. The accuracy of identification of sex using this method alone was found to be about 70%. Am J Phys Anthropol 108:91–96, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
Using Schutkowski's method for juvenile sex determination (Schutkowski H. 1993. Am J Phys Anthropol 90:199-205), we evaluated the morphology of the greater sciatic notch of 56 ilia (23 females and 33 males) from a documented skeletal collection housed at the Bocage Museum in Lisbon (Portugal). After applying Schutkowski's original methodology and comparing the results with previous studies, we used age-adjusted metrical variables to describe greater sciatic notch depth, breadth, and angle. Although results of both morphological and metrical analyses did not reveal a statistically significant level of sexual analyses dimorphism, we found a strong correlation between pelvic morphology and age at death. On the basis of the obtained results, we argue that Schutkowski's morphological method does not predict sex accurately in all populations and that recorded correlation of iliac features with age needs to be further explored in the context of the ontogeny of sexual dimorphism.  相似文献   

16.
In situ radiographic analysis of the maxillary canines ofMacaca fuscata was conducted on 88 specimens in 44 individuals (23 dry skulls and 21 live animals) in order to examine the number of roots. The left canines were then extracted from ten female skulls for measurement, further radiographic examination, and visual morphological observation. The results showed a clear sexual dimorphism in root morphology: all male canines were clearly distinguished as single-rooted from the radiograph, whereas more than 40% of the female canines were double-rooted. Variation was also found among the single-rooted female canines, in that some of these teeth appeared to have a bifurcated canal. This sexual dimorphism in the number of maxillary canine roots and the individual variation found among the females in root and canal morphology are previously unreported for this species. No observations were attempted on mandibular canines, however, because of the incomplete nature of the sample.  相似文献   

17.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

18.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

19.
20.
In many vertebrates, male offspring are affected more than female offspring by adverse conditions during growth, resulting in facultative adjustment of offspring sex ratio by parents in response to social and environmental conditions during breeding. The greater vulnerability of male offspring is generally attributed to their higher energy requirements associated with their larger size, although greater sensitivity to adverse conditions could be related to other factors such as negative effects of androgens on male physiology. To control for sexual differences in body size, we examined variation in offspring sex ratio in the Common Tern Sterna hirundo , a species with negligible sexual size dimorphism. In this species, the last-laid egg (termed the c-egg) is smaller than the first two and hatches last, so that the chick obtains relatively little food and hence has a low probability of survival to fledging. This species thus provides a powerful model for examining sex-linked mortality and sex ratio variation under natural conditions. We found that the sex ratio of c-eggs, but not of earlier laid eggs, was significantly biased in favour of females. Chicks hatched from c-eggs (termed c-chicks) had low survival but female c-chicks had significantly higher survival than male c-chicks. These data provide strong evidence that factors other than sexual size dimorphism are responsible for producing greater vulnerability of male offspring to adverse conditions during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号