首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional aspect of rat and monkey lung multilamellar bodies was demonstrated in lipid retained thin sections. The glutaraldehyde and urea lipid retention embedment and an Epon 812 resin polar dehydrant procedure were utilized to retain lamellar lipids for precise morphological study. The unextracted multilamellar bodies were found to conform to a general, though complex, threedimensional structure. A model that demonstrated that structure was derived. Freezeetch and extracted material were shown to support the model. Mature multilamellar bodies were from 1.2–1.6 μ in diameter and were 1.0–1.6 μ high. Each body contained a matrix core that included from 2–25 vesicular bodies and was in contact with the limiting membrane at the matrix plate. Most bodies had from 25–70 lamellae attached for 360 ° to the projection plate. Microtubules were seen in communication with the matrix core. When sectioned in longitudinal section, lamellae projected from the base plate and coursed parallel to the limiting membrane of the top half of the body. Any cross-section produced circular lamellae without apparent attachment. Oblique sections sometimes produced both ‘stacked’ and ‘circular’ lamellae. Four postulates of multilamellar body formation were discussed in light of these findings.  相似文献   

2.
The three-dimensional structure of P2 myelin protein.   总被引:7,自引:0,他引:7       下载免费PDF全文
T A Jones  T Bergfors  J Sedzik    T Unge 《The EMBO journal》1988,7(6):1597-1604
The three-dimensional structure of P2 protein from peripheral nervous system myelin has been determined at 2.7 A resolution by X-ray crystallography. The single isomorphous replacement/anomalous map was interpreted using skeletonized electron density on a computer graphics system. An atomic model was built using fragment fitting. The structure forms a compact 10-stranded up-and-down beta-barrel which encapsulates residual electron density that we interpret as a fatty acid molecule. This beta-barrel shows some similarity to, but is different from, the retinol binding protein family of structures. The relationship of the P2 structure to a family of cytoplasmic, lipid binding proteins is described.  相似文献   

3.
Summary Perfusion fixation via pulmonary trunk was applied to the alveolar lining layer in situ at different lung volumes using a fixative containing tannic acid-ferrocyanide osmium. The monomolecular surface film and hypophasic tubular myelin figures were enhanced. In the range of transpulmonary pressure (1–10 cmH2O), the surface film appeared in the form of a single, electron-dense leaflet, 2.7±0.6 nm (M±SD) in thickness while trilaminar membrane structure was retained in all parts of the tubular myelin figures of the hypophase. The surface film was attached underneath at right angles with trilaminar membranes which formed the outermost parts of the tubular myelin. Such structural continuity was taken to support a view that the phospholipid unit membrane of the tubular myelin figure would be transformed at the hydrophobic phase into a pair of monomolecular leaflets, eventually forming the surface film.  相似文献   

4.
While dipalmitoyl phosphatidylcholine (PC16:0/16:0) is essential for pulmonary surfactant function, roles for other individual molecular species of surfactant phospholipids have not been established. If any phospholipid species other than PC16:0/16:0 is important for surfactant function, then it may be conserved across animal species. Consequently, we have quantified, by electrospray ionisation mass spectrometry, molecular species compositions of phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylinositol (PI) in surfactants from human, rabbit, rat and guinea pig lungs. While PC compositions displayed only relatively minor variations across the animal species studied, there were wide variations of PG and PI concentrations and compositions. Human surfactant PG and PI were enriched in the same three monounsaturated species (PG16:0/18:1, PG18:1/18:1 and PG18:0/18:1) with minimal amounts of PG16:0/16:0 or polyunsaturated species, while all animal surfactant PG contained increased concentrations of PG16:0/16:0 and PG16:0/18:2. Animal surfactant PIs were essentially monounsaturated except for a high content of PI18:0/20:4 (29%) in the rat. As these four surfactants all maintain appropriate lung function of the respective animal species, then all their varied compositions of acidic phospholipids must be adequate at promoting the processes of adsorption, film refinement, respreading and collapse characteristic of surfactant. We conclude that this effectively monounsaturated composition of anionic phospholipid molecular species is a common characteristic of mammalian surfactants.  相似文献   

5.
Tubular myelin figures of pulmonary surfactant were examined by electron microscopy after fixation in glutaraldehyde and postfixation in an osmium tetroxide-ferrocyanide mixture. Bilayered membranes were seen as parallel arrays or as lattices with spacings varying from about 36 to 50 nm. This method also produced good visualization of drumstick-like particles, 5 nm in diameter and about 15 nm in length. The particles were regularly spaced at intervals of 16 nm in rows along the rectangular angles of myelin membranes. Depending on the size of the tubules the particles contacted each other in the center of the tubules at low diameters (tubular diameter less than 40 nm) and formed a continuous filamentous central core, or they were separated from one another (tubular diameter greater than 40 nm). In the latter case the central core had a hollow appearance. Based on further findings employing tannic acid, lipid extraction with 2,2-dimethoxypropane, and a ruthenium red-osmium tetroxide technique for the demonstration of polyanionic proteins it is suggested that these particles are protein in nature and that they are involved in the formation and maintenance of the structure of tubular myelin. A new concept of the ultrastructure of tubular myelin figures is proposed.  相似文献   

6.
The surfactant system of the lung   总被引:17,自引:0,他引:17  
R J King 《Federation proceedings》1974,33(11):2238-2247
  相似文献   

7.
8.
Lamellar bodies and alveolar lavage from adult mammalian lung contain unusually high concentrations of phosphatidylglycerol that could serve as a sensitive indicator of surfactant. Phosphatidylglycerol was absent and phosphatidylinositol was correspondingly prominent in surfactant from the preterm rabbit fetus. Phosphatidylglycerol rapidly appeared and phosphatidylinositol decreased following the delivery. Surfactant isolated from the prematurely born rabbit or from humans with respiratory distress syndrome never contained phosphatidylglycerol. Comparison between lamellar bodies from fetal and postnatal rabbits revealed remarkably similar composition except for the acidic phospholipids; however, the physico-chemical properties were different. The compressibility of the surface film (i.e. the ratio of the fractional decrease in surface area and the corresponding decrease in surface tension) at low surface tensions was higher with fetal than with postnatal surfactant, whereas the difference in minimum surface tensions was small. These data suggest that phosphatidylglycerol is not an essential component required for the formation of the complex, but it improves the properties of surfactant in stabilizing the alveoli.  相似文献   

9.
It is generally believed that lung alveoli contain an extracellular aqueous layer of surfactant material, which is allegedly required to prevent alveolar collapse at small lung volume; the surfactant's major constituent is a fully saturated phospholipid, referred to as dipalmitoyl lecithin or DPL. I herein demonstrate that the surfactant hypothesis of alveolar stability is fundamentally wrong. Although DPL is synthesized inside type II epithelial cells and stored in the typical inclusion bodies therein and lowers surface tension to zero in the surface balance, there is no evidence to the effect that type II cells secrete the DPL surfactant into the aqueous intra-alveolar layer which is shown by electron microscopy in support of the surfactant theory. To the contrary, all the evidence indicates that, when seen, such an extracellular layer is an artifact. This is probably upon the damage glutaraldehyde inflicts onto alveolar structures during fixation of air-inflated lung tissue. Furthermore, several cogent arguments invalidate the belief that an extracellular layer of DPL and serum proteins is present in the alveoli of normal lung. In light of these arguments, a surface tension role of DPL in alveolar stability is excluded. Three hypotheses for an alternative role of DPL in respiration mechanics are proposed. They are: (a) alveolar clearance by viscolytic and surfactant action (bubble or foam formation) on the aqueous systems which are present in lung alveoli during edema and in prenatal life and which would otherwise be impervious to air; (b) homeostasis of blood palmitate in normal lung; (c) modulation of the elasticity of terminal lung tissue by the intact inclusion bodies and parts thereof inside type II cells in normal lung.  相似文献   

10.
The proteins of human lung surfactant   总被引:1,自引:0,他引:1  
Human pulmonary surfactant was purified from bronchoalveolar lavage of patients. The proteins present in surfactant were analyzed by SDS-polyacrylamide gel electrophoresis into serum and non-serum components. One non-serum surfactant protein (Mr = 43 000) was then identified in the 100 000 X g supernatant of a lung homogenate on the basis of phospholipid binding. This lung protein was purified and partially characterized. The presence of 3-methyl histidine and reaction in Western blot analysis with antibody against chicken muscle actin both strongly suggested that the 43 000 Da protein of human surfactant is indeed cytoplasmic actin. It is proposed that this surfactant protein is involved in the secretion and not necessarily in the function of surfactant.  相似文献   

11.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

12.
Comparative studies on myelin proteins in mammalian peripheral nerve.   总被引:4,自引:0,他引:4  
Myelin proteins in mammalian peripheral nerve were studied comparatively. 1. While each content of P1 and P2 in the myelin varied among species, additional content of P1 and P2 are relatively constant. 2. The antigenic determinants of P2 for induction of experimental allergic neuritis were reported. 3. Amino acid sequence analysis of P0 revealed that P0 is conserved across species and belongs to the immunoglobulin superfamily. 4. The characteristic carbohydrate chain of P0 containing sulfate and sialic acid showed a positive reaction to the molecule-related immunity and adhesion. 5. Molecular architecture of the myelin is discussed.  相似文献   

13.
14.
15.
1. Radioactively labelled pulmonary surfactant was prepared in an isolated perfused lung system provided with [14C]hexadecanoate. 2. After intratracheal administration of pulmonary surfactant radioactively labelled components were rapidly distributed into different lung fractions, including macrophages (free cells), but most of the radioactive label was accumulated by the lung tissue. 3. Alveolar macrophages, maintained in a variety of culture media in the presence and absence of mineral particles, incorporated a low percentage (11%) of radioactively labelled components when incubated with the surfactant, although evolution of labelled CO2 (6% of the original total activity) suggested that some breakdown of the components had taken place. 4. In similar cultures little intracellular accumulation or extracellular release of non-esterified fatty acids was demonstrated, indicating minimal catabolism of the high-molecular-weight lipid components of surfactant (particularly phosphatidylcholine). 5. However, experiments in vitro designed to simulate the lysosomal degradation of endocytosed surfactant indicated that the macrophage had enzymes capable of releasing non-esterified fatty acids, particularly hexadecanoate, from the lipoprotein complex. 6. It is argued that lung cells, other than alveolar macrophages, may also have a role in surfactant turnover.  相似文献   

16.
The physical properties of an effective lung surfactant   总被引:7,自引:0,他引:7  
It is suggested that the phospholipids at the alveolar/air interface exhibit both thermodynamic (equilibrium) and kinetic forces during the course of a respiratory cycle. The alveolae are kept open at full expiration by a residue of nearly pure dipalmitoyl phosphatidylcholine which is condensed and therefore, incompressible at 37 degrees C.  相似文献   

17.
Surfactant was isolated from lung tissue of normal and chlorocyclizine-fed rats. Chlorocyclizine surfactant contained 2.5-3.4 times more phospholipids per mg protein than normal surfactant. Alveolar macrophages, incubated in vitro with normal and chlorocyclizine surfactants hydrolyzed the surfactant phospholipids and incorporated the fatty acids into cellular triacylglycerol. Employing [3H]palmitate-labeled surfactant, it was shown that cells incubated with chlorocyclizine surfactant incorporated 46.2-73.0 nmol of fatty acids per mg protein and were transformed into foam cells. Employing fluorescein or 125I-labeled surfactant, the uptake of surfactant protein by macrophages was shown. No significant differences between protein uptake from normal and chlorocyclizine surfactants were observed. These results suggest that the surfactant phospholipids and protein were catabolized independently.  相似文献   

18.
The behaviour of lung surfactant in electrolyte solutions   总被引:2,自引:0,他引:2  
Surface and electrokinetic properties of purified calf lung surfactant in various electrolyte solutions were determined. Surface properties were pH dependent in distilled water and the surfactant performed as a good lung surfactant only below pH 4. In more physiological media it was pH insensitive over the range 2-8.5. In distilled water at pH 6 its surface properties improved when NaCl was added up to 20 mM; above this concentration it had the surface properties required to stabilise alveoli. The surface properties of surfactant in distilled water were also restored by certain cations (Ca2+, Mg2+, Mn2+, Cd2+ and Ni2+) but not others (Na+, K+, La3+ and Fe3+) when added to an ionic strength of 5.6 mM. Cations that restored its surface activity also reduced the surface charge density on the surfactant particles. Aggregation of surfactant by various metal chlorides was studied by light scattering measurements and bore no relation to surface activity or the charge on the particles. Aggregation of surfactant particles by Ca2+, Cd2+ and Mn2+ was instantly reversed by addition of excess EGTA. The influence of electrolytes on the surface properties of lung surfactant is explained in terms of the electrostatic forces operating in the system.  相似文献   

19.
The present study characterizes the dynamic interfacial properties of calf lung surfactant (CLS) and samples reconstituted in a stepwise fashion from phospholipid (PL), hydrophobic apoprotein (HA), surfactant apoprotein A (SP-A), and neutral lipid fractions. Dipalmitoylphosphatidylcholine (DPPC), the major PL component of surfactant, was examined for comparison. Surface tension was measured over a range of oscillation frequencies (1-100 cycles/min) and bulk phase concentrations (0.01-1 mg/ml) by using a pulsating bubble surfactometer. Distinct differences in behavior were seen between samples. These differences were interpreted by using a previously validated model of surfactant adsorption kinetics that describes function in terms of 1) adsorption rate coefficient (k1), 2) desorption rate coefficient (k2), 3) minimum equilibrium surface tension (gamma*), 4) minimum surface tension at film collapse (gammamin), and 5) change in surface tension with interfacial area for gamma < gamma* (m2). Results show that DPPC and PL have k1 and k2 values several orders of magnitude lower than CLS. PL had a gammamin of 19-20 dyn/cm, significantly greater than CLS (nearly zero). Addition of the HA to PL restored dynamic interfacial behavior to nearly that of CLS. However, m2 remained at a reduced level. Addition of the SP-A to PL + HA restored m2 to a level similar to that of CLS. No further improvement in function occurred with the addition of the neutral lipid. These results support prior studies that show addition of HA to the PL markedly increases adsorption and film stability. However, SP-A is required to completely normalize dynamic behavior.  相似文献   

20.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号