共查询到20条相似文献,搜索用时 15 毫秒
1.
The length of the flagella of Chlamydomonas reinhardtii cells is tightly regulated; both short-flagella and long-flagella mutants have been described. This report characterizes ten long-flagella mutants, including five newly isolated mutants, to determine the number of different loci conferring this phenotype, and to study interactions of mutants at different loci. The mutants, each of which was recessive in heterozygous diploids with wild type, fall into three unlinked complementation groups. One of these defines a new gene, lf3, which maps near the centromere of linkage group I. The flagellar length distributions in populations of each mutant were broad, with the longest flagella measuring four times the length of the longest flagella seen on wild-type cells. Each of the ten mutants had defective flagellar regrowth after amputation. Some of the mutants showed no regrowth within the time required for wild-type cells to regenerate flagella completely. Other mutants had subpopulations with rapid regeneration kinetics, and subpopulations with no observable regeneration. The mutants were each crossed to wild type to form temporary quadriflagellate, dikaryon cells; in each case the long flagella were rapidly shortened in the presence of the wild-type cytoplasm, demonstrating that the mutants were recessive, and that length control could be exerted on already assembled flagella. 相似文献
2.
Genetic Interactions at the Fla10 Locus: Suppressors and Synthetic Phenotypes That Affect the Cell Cycle and Flagellar Function in Chlamydomonas Reinhardtii 总被引:8,自引:4,他引:8 下载免费PDF全文
Through the isolation of suppressors of temperature-sensitive flagellar assembly mutations at the FLA10 locus of Chlamydomonas reinhardtii, we have identified six other genes involved in flagellar assembly. Mutations at these suppressor loci, termed SUF1-SUF6, display allele specificity with respect to which fla10- mutant alleles they suppress. An additional mutation, apm1-122, which confers resistance to the plant herbicides amiprophos-methyl and oryzalin, was also found to interact with mutations at the FLA10 locus. The apm1-122 mutation in combination with three fla10- mutant alleles results in synthetic cold-sensitive cell division defects, and in combination with an additional pseudo-wild-type fla10- allele yields a synthetic temperature-sensitive flagellar motility phenotype. Based upon the genetic interactions of these loci, we propose that the FLA10 gene product interacts with multiple components of the flagellar apparatus and plays a role both in flagellar assembly and in the cell cycle. 相似文献
3.
We have developed and used a genetic selection system in Escherichia coli to study functional requirements for homing site recognition and cleavage by a representative eukaryotic mobile intron endonuclease. The homing endonuclease, I-CreI, was originally isolated from the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. I-CreI homing site mutants contained base pair substitutions or single base deletions that altered the rate of homing site cleavage and/or product release. I-CreI endonuclease mutants fell into six phenotypic classes that differed in in vivo activity, toxicity or genetic dominance. Inactivating mutations clustered in the N-terminal 60% of the I-CreI amino acid sequence, and two frameshift mutations were isolated that resulted in premature translation termination though retained partial activity. These mutations indicate that the N-terminal two-thirds of the I-CreI endonuclease is sufficient for homing site recognition and cleavage. Substitution mutations altered in four potential active site residues were examined: D20N, Q47H or R70A substitutions inactivated endonuclease activity, whereas S22A did not. The genetic approach we have taken complements phylogenetic and structural studies of mobile intron endonucleases and has provided new information on the mechanistic basis of I-CreI homing site recognition and cleavage. 相似文献
4.
Light-dependent conidiation in the filamentous ascomycete, Aspergillus nidulans, is contingent on the allelic state of the velvet (veA) gene. Light dependence is abolished by a mutation in this gene (veA1), which allows conidiation to occur in the absence of light. We have isolated and characterized six extragenic suppressors of veA1 that restore the light-dependent conidiation phenotype. Alleles of four genes, defined by complementation tests, were subjected to extensive genetic and phenotypic analysis. The results of light-dark shifting experiments and the phenotypes of double mutant combinations are consistent with the possibility that the expression of the light-dependent phenotype is regulated by specific interactions of the suppressor gene products with the velvet gene product and with each other. 相似文献
5.
Chaperones are known to play an important role in complexation of cyclin-dependent kinases with cyclins. In yeast cells growing in the presence of phosphate, cyclin-dependent kinase Pho85p and cyclin Pho80p form a complex and phosphorylate activator Pho4p. As a result, Pho4p is exported from the nucleus, and the PHO5 gene is not transcribed. The mutations suppressing thepho85 mutation were analyzed in order to identify genes which code for chaperones involved in the formation of the Pho80p–Pho85p complex in the presence of environmental phosphate. Dominant mutations DSP1, DSP2, and DSP4–6 were found. It is shown that the DSP1gene is 2.1 cM away from thePHO85 gene on chromosome XVI and probably coincides with the EGD1 gene coding for a chaperone. 相似文献
6.
Genetic Interactions among Chlamydomonas Reinhardtii Mutations That Confer Resistance to anti-Microtubule Herbicides 下载免费PDF全文
We previously described two types of genetic interactions among recessive mutations in the APM1 and APM2 loci of Chlamydomonas reinhardtii that may reflect a physical association of the gene products or their involvement in a common structure/process: (1) allele-specific synthetic lethality, and (2) unlinked noncomplementation, or dominant enhancement. To further investigate these interactions, we isolated revertants in which the heat sensitivity caused by the apm2-1 mutation is lost. The heat-insensitive revertants were either fully or partially suppressed for the drug-resistance caused by the apm2-1 allele. In recombination tests the revertants behaved as if the suppressing mutation mapped within the APM2 locus; the partial suppressors of apm2-1 herbicide resistance failed to complement apm2-1, leading to the conclusion that they were likely to be intragenic pseudorevertants. The apm2-1 partial suppressor mutations reversed apm1-apm2-1 synthetic lethality in an allele-specific manner with respect both to apm1- alleles and apm2-1 suppressor mutations. Those apm1- apm2-1rev strains that regained viability also regained heat sensitivity characteristic of the original apm2-1 mutation, even though the apm2-1 suppressor strains were fully heat-insensitive. The Hs+ phenotypes of apm2-1 partial suppressors were also reversed by treatment with the microtubule-stabilizing agent deuterium oxide (D2O). In addition to the above interactions, we observed interallelic complementation and phenotypic enhancement of temperature conditionality among apm1- alleles. Evidence of a role for the products of the two genes in microtubule-based processes was obtained from studying flagellar assembly in apm1- and apm2- mutants. 相似文献
7.
8.
Forty single gene mutations in Chlamydomonas reinhardtii were isolated based on resistance to the compound 5'-methyl anthranilic acid (5-MAA). In other organisms, 5-MAA is converted to 5'-methyltryptophan (5-MT) and 5-MT is a potent inhibitor of anthranilate synthase, which catalyzes the first committed step in tryptophan biosynthesis. The mutant strains fall into two phenotypic classes based on the rate of cell division in the absence of 5-MAA. Strains with class I mutations divide more slowly than wild-type cells. These 17 mutations map to seven loci, which are designated MAA1 to MAA7. Strains with class II mutations have generation times indistinguishable from wild-type cells, and 7 of these 23 mutations map to loci defined by class I mutations. The remainder of the class II mutations map to 9 other loci, which are designated MAA8-MAA16. The maa5-1 mutant strain excretes high levels of anthranilate and phenylalanine into the medium. In this strain, four enzymatic activities in the tryptophan biosynthetic pathway are increased at least twofold. These include the combined activities of anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, indoleglycerol phosphate synthetase and anthranilate synthase. The slow growth phenotypes of strains with class I mutations are not rescued by the addition of tryptophan, but the slow growth phenotype of the maa6-1 mutant strain is partially rescued by the addition of indole. The maa6-1 mutant strain excretes a fluorescent compound into the medium, and cell extracts have no combined anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase and indoleglycerol phosphate synthetase activity. The MAA6 locus is likely to encode a tryptophan biosynthetic enzyme. None of the other class I mutations affected these enzyme activities. Based on the phenotypes of double mutant strains, epistatic relationships among the class I mutations have been determined. 相似文献
9.
A Dominant Mutation in the Chlamydomonas Reinhardtii Nuclear Gene Sim30 Suppresses Translational Defects Caused by Initiation Codon Mutations in Chloroplast Genes 下载免费PDF全文
A suppressor of a translation initiation defect caused by an AUG to AUU mutation in the Chlamydomonas reinhardtii chloroplast petD gene was isolated, defining a nuclear locus that we have named SIM30. A dominant mutant allele at this locus, sim30-1d, was found to increase the translation initiation rate of the mutant petD mRNA. sim30-1d was also able to suppress the translational defect caused by an AUG to AUC mutation in the petD gene, and an AUG to AUU mutation in the chloroplast petA gene. We therefore suggest that the SIM30 gene may encode a general chloroplast translation factor. The ability of sim30-1d to suppress the petD AUG to AUU mutation is diminished in the presence of one or more antibiotic resistance markers located within the 16S and 23S rRNAs, suggesting that the activity of the sim30-1d gene product in translation initiation may involve interaction with ribosomal subunits. 相似文献
10.
11.
Genes Involved in Light Control of Sexual Differentiation in Chlamydomonas Reinhardtii 总被引:3,自引:0,他引:3 下载免费PDF全文
Gamete formation requires the sequential action of two extrinsic cues, nitrogen deprivation and blue light. The mutants described here are specifically altered in the light-dependent step. Mutations lrg1, lrg3, and lrg4 overcome this light dependence while mutation lrg2 results in a delayed execution of the light-mediated step. The four mutations are linked. The recessive nature of the lrg1, lrg3, and lrg4 mutations implies that they encode elements of negative control in this light response pathway. Analyses of diploids suggest an interaction between the gene products of the mutated loci with a central role for lrg4. The lrg4 mutation is unique also because it overcomes the light dependence of Chlamydomonas zygote germination when present in homozygous form. These data indicate that there are common components in the signal chains that control gametogenesis and zygote germination. 相似文献
12.
Localization of the Nic-7, Ac-29 and THI-10 Genes within the Mating-Type Locus of Chlamydomonas Reinhardtii 总被引:1,自引:0,他引:1 下载免费PDF全文
P. J. Ferris 《Genetics》1995,141(2):543-549
The tight linkage observed between the mating-type (mt) locus of Chlamydomonas reinhardtii and three auxotrophic mutations--nic-7 (nicotinamide-requiring), ac-29 (acetate-requiring), and thi-10 (thiamine-requiring)--has led to the hypothesis that recombination is suppressed in the mt region. The physical location of these three genes has been established by transformation with sets of cloned DNA from the mt region. They lie to the left and right of the highly rearranged (R) domain of the mt locus, which has been proposed to be responsible for the recombinational suppression in the region. The cloned nic-7(+) and thi-10(+) genes will be useful as selectable markers for cotransformation experiments. 相似文献
13.
Cloning of Flagellar Genes in Chlamydomonas Reinhardtii by DNA Insertional Mutagenesis 总被引:16,自引:4,他引:16 下载免费PDF全文
Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas. 相似文献
14.
Suppressors of the Ndc10-2 Mutation: A Role for the Ubiquitin System in Saccharomyces Cerevisiae Kinetochore Function 下载免费PDF全文
We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37°, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function. 相似文献
15.
Linkage group XIX (or the UNI linkage group) of Chlamydomonas reinhardtii has been reported to show a circular meiotic recombination map. A circular map predicts the existence of strong chiasma and chromatid interference, which would lead to an excess number of two-strand double crossovers during meiosis. We have tested this prediction in multipoint crosses. Our results are consistent with a linear linkage group that shows positive chiasma interference and no chromatid interference. Chiasma interference occurs both within arms and across the centromere. Of the original loci that contributed to the circular map, we find that two map to other linkage groups and a third cannot be retested because the mutant strain that defined it has been lost. A second reported unusual property for linkage group XIX was the increase in meiotic recombination with increases in temperature during a period that precedes the onset of meiosis. Although we observed changes in recombination frequencies in some intervals on linkage group XIX in crosses to CC-1952, and in strains heterozygous for the mutation ger1 at 16°, we also show that our strains do not exhibit the previously observed patterns of temperature-sensitive recombination for two different pairs of loci on linkage group XIX. We conclude that linkage group XIX has a linear genetic map that is not significantly different from other Chlamydomonas linkage groups. 相似文献
16.
Saccharomyces cerevisiae contains two members of the ras gene family. Strains with disruptions of the RAS2 gene fail to grow efficiently on nonfermentable carbon sources. This growth defect can be suppressed by extragenic mutations called sra. We have isolated 79 independent suppressor mutations, 68 of which have been assigned to one of five loci. Eleven additional dominant mutations have not been assigned to a specific locus. Some sra1 and SRA4 and all SRA3 mutations were RAS independent, allowing growth of yeast cells that lack a functional RAS gene. Mutations in sra1, SRA3, SRA4 and sra6 are linked to his6, ino1, met3 and ade6, respectively. Some sra mutants have pleiotropic phenotypes that affect glycogen accumulation, sporulation, viability, respiratory capacity and suppression of two cell-division-cycle mutations, cdc25 and cdc35. The proposed functions of many of the suppressor genes are consistent with the model in which RAS activates adenylate cyclase. 相似文献
17.
Mitochondrial Genetics of Chlamydomonas Reinhardtii: Resistance Mutations Marking the Cytochrome B Gene 总被引:2,自引:0,他引:2 下载免费PDF全文
We describe the genetic and molecular analysis of the first non-Mendelian mutants of Chlamydomonas reinhardtii resistant to myxothiazol, an inhibitor of the respiratory cytochrome bc1 complex. Using a set of seven oligonucleotide probes, restriction fragments containing the mitochondrial cytochrome b (cyt b) gene from C. reinhardtii were isolated from a mitochondrial DNA library. This gene is located adjacent to the gene for subunit 4 of the mitochondrial NADH-dehydrogenase (ND4), near one end of the 15.8-kb linear mitochondrial genome of C. reinhardtii. The algal cytochrome b apoprotein contains 381 amino-acid residues and exhibits a sequence similarity of about 59% with other plant cytochrome b proteins. The cyt b gene from four myxothiazol resistant mutants of C. reinhardtii was amplified for DNA sequence analysis. In comparison to the wild-type strain, all mutants contain an identical point mutation in the cyt b gene, leading to a change of a phenylalanine codon to a leucine codon at amino acid position 129 of the cytochrome b protein. Segregation analysis in tetrads from reciprocal crosses of mutants with wild type shows a strict uniparental inheritance of this mutation from the mating type minus parent (UP-). However, mitochondrial markers from both parents are recovered in vegetative diploids in variable proportions from one experiment to the next for a given cross. On the average, a strong bias is seen for markers inherited from the mating type minus parent. 相似文献
18.
Nuclear Suppressors of the Photosensitivity Associated with Defective Photosynthesis in Chlamydomonas reinhardii 总被引:1,自引:0,他引:1
Several nuclear mutations were recovered that suppress the photosensitivity associated with the Chamydomonas reinhardii chloroplast mutant rcl-u-1-10-6C, which is defective in ribulose-1,5-bisphosphate carboxylase/oxygenase. Two of the suppressor mutations affect other components of photosynthesis. These results show that suppressors of photosensitivity are sufficiently common to permit the recovery of photosensitive, photosynthesis-deficient mutants in bright light, and indicate that photosynthesis-deficient mutants selected and maintained in the light may accumulate suppressors which can confuse the biochemical analysis of lesions in photosynthesis. One of the suppressor mutations inhibits photosystem II activity, indicating that photosensitivity can be mediated by partial reactions of the photosynthetic electron transport chain. 相似文献
19.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis-the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity. 相似文献
20.