首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed extragenic suppressors of paralyzed flagella mutations in Chlamydomonas reinhardtii in an effort to identify new dynein mutations. A temperature-sensitive allele of the PF16 locus was mutagenized and then screened for revertants that could swim at the restrictive temperature (Dutcher et al. 1984. J. Cell Biol. 98:229-236). In backcrosses of one of the revertant strains to wild-type, we recovered both the original pf16 mutation and a second, unlinked suppressor mutation with its own flagellar phenotype. This mutation has been identified by both recombination and complementation tests as a new allele of the previously uncharacterized PF9 locus on linkage group XII/XIII. SDS-PAGE analysis of isolated flagellar axonemes and dynein extracts has demonstrated that the pf9 strains are missing four polypeptides that form the I1 inner arm dynein subunit. The primary effect of the loss of the I1 subunit is a decrease in the forward swimming velocity due to a change in the flagellar waveform. Both the flagellar beat frequency and the axonemal ATPase activity are nearly wild-type. Examination of axonemes by thin section electron microscopy and image averaging methods reveals that a specific domain of the inner arm complex is missing in the pf9 mutant strains (see accompanying paper by Mastronarde et al.). When combined with other flagellar defects, the loss of the I1 subunit has synergistic effects on both flagellar assembly and flagellar motility. These synthetic phenotypes provide a screen for new suppressor mutations in other loci. Using this approach, we have identified the first interactive suppressors of a dynein arm mutation and an unusual bypass suppressor mutation.  相似文献   

2.
Allelic differences at any one of at least 11 heterokaryon incompatibility (het) loci in Neurospora crassa trigger an incompatibility response: localized cell death at sites of hyphal anastomosis. We have isolated spontaneous and insertional suppressor mutants that are heterokaryon-compatible in spite of allelic differences at one or at several het loci. Some intra- and extragenic mutants tolerated allelic differences only at single het loci. Multi-tolerant spontaneous mutants were isolated by selecting simultaneously for tolerance of differences at het-c, -d and -e, or at each of these plus mating-type. Some suppressor mutants were specific for only one allele at the affected het locus; others suppressed both alleles. Insertional mutations were isolated from banks of transformants, each having a plasmid integrated into a random position in the chromosome. One mutant tolerated allelic differences at het-d. A homologous cosmid from a Neurospora genomic bank complemented the mutant phenotype. A second insertional inactivation mutant was tolerant of het-c differences. Inactivation of the wild-type locus corresponding to the integration site was accomplished by repeat-induced point mutation (RIP). The RIP progeny, like the original mutant, were tolerant of differences at het-c. It may be possible to use such suppressor mutants as universal donors of hypovirulence in pathogenic fungi.  相似文献   

3.
The mating-type information residing at the HML and HMR loci in Saccharomyces cerevisiae is kept unexpressed by the action of at least four MAR (or SIR) loci. To determine possible interactions between the MAR/SIR gene products and to find new regulatory loci, we sought extragenic suppressors of the mar1-1 mutation. A strain with the genotype HMLa MAT alpha HMRa mar1-1 is unable to mate because of the simultaneous expression of a and alpha information. A mutant of this strain was isolated that exhibits an alpha phenotype and, therefore, presumably fails to express the HML and HMR loci. We designate the new locus SUM1 (suppressor of mar). The mutation is recessive, centromere unlinked and does not correspond to the MAT, HML, HMR, SIR1, MAR1, MAR2 (SIR3) or SIR4 loci. The sum1 mutation affects expression of both a and alpha information at the HM loci. Suppression by sum1-1 is neither allele specific nor locus specific as it suppresses a deletion mutation of the MAR1 locus and mutations in SIR3 and SIR4. The sum1-1 mutation has no discernible phenotype in a Mar+ strain. We propose that the MAR/SIR gene products negatively regulate the SUM1 locus, the gene product of which is necessary for expression of the HM loci.  相似文献   

4.
The antimicrotubule agents oryzalin (ORY), colchicine (COL) and taxol (TAX) were used to select three recessive, conditional lethal (ts-) mutants which defined two new essential loci, ory1 and cor1. The two ory1 mutants conferred resistance to ORY, TAX, and COL; the cor1 mutant conferred resistance only to COL. Each of the mutants displayed wild-type sensitivity to a number of unrelated inhibitors. Assembly and disassembly of flagellar microtubules in the ory1 mutants displayed wild-type sensitivity to ORY and COL, suggesting that the ory1 gene product either does not participate in these processes or the ory1 gene product alone is not sufficient to confer resistance. The ory1 locus mapped to linkage group X; cor1 was mapped to the left arm of linkage group XII. A synthetic lethal interaction was observed between ory1 and cor1 mutations, i.e., inferred ory1 cor1 double mutants were inviable at the permissive temperature. The conditional lethal phenotype of ory1-1 was used to select many spontaneous TS+ revertants, which arose at high frequencies. Genetic and phenotypic characterization of the revertants demonstrated that (1) the revertants fell into four phenotypic classes, including some which conferred supersensitivity to ORY and others which conferred cold-sensitive lethality, (2) reversion was caused in most or all cases by extragenic suppressors, (3) suppressor mutations displayed complex behavior in heterozygous (sup/+) diploids, (4) many different loci may be capable of suppressing ory1 mutants, and (5) suppressors of ory1-1 efficiently suppressed an independently isolated allele, ory1-2. Taken together the ory1, cor1, and suppressor mutations identify a number of interacting loci involved in essential cellular processes which are specifically susceptible to antimicrotubule agents.  相似文献   

5.
Certain mutations in the unc-105 II gene of the nematode Caenorhabditis elegans have dominant effects on morphology and behavior: animals become small, severely hypercontracted and paralyzed. These unc-105 mutants revert both spontaneously and with mutagens at high frequencies to a wild-type phenotype. Most of the reversion events are intragenic, apparently because the null (loss-of-function) phenotype of unc-105 is wild type. One revertant defined an extragenic suppressor locus, sup-20 X. Such suppressor alleles of sup-20 are rare, and the apparent null phenotype of sup-20 is embryonic lethality. By constructing animals genetically mosaic for sup-20, we have shown that the primary effect of sup-20 is in muscle cells. In addition to mutations in sup-20, other mutations causing muscle defects, such as unc-54 and unc-22 mutations, suppress the hypercontracted phenotype of unc-105. The ease of identifying nonhypercontracted revertants of unc-105 mutants greatly facilitates the isolation of new mutants defective in muscle structure and function.  相似文献   

6.
A dramatic example of a phenotypic interaction that involves neurogenic loci during Drosophila imaginal development is the synergistic impact of split (spl), a recessive allele of the Notch locus, and E(spl)D, a dominant gain-of-function allele of the Enhancer of split locus, on morphogenesis of the compound eye. Screens for mutations that relieve the enhancing effect of E(spl)D on spl have yielded three classes of mutations: intragenic revertants of the E(spl)D allele, extragenic suppressors that are allelic to the neurogenic gene Delta (Dl) and unlinked extragenic modifiers. Analysis of the suppression of the spl-E(spl)D interaction by various Dl alleles indicates that this modification is sensitive to the dosage of the Dl locus. This tripartite interaction illustrates the combinatorial action of N, Dl and E(spl) during imaginal development.  相似文献   

7.
M. J. Prival  T. A. Cebula 《Genetics》1992,132(2):303-310
We have examined the effects of prolonged histidine deprivation on the reversion of Salmonella typhimurium histidine auxotrophs containing either hisG46, a missense mutation (CTC----CCC), or hisG428, an ochre mutation (CAA----TAA). Both of these mutants can revert to His+ via intragenic and extragenic mechanisms. Whereas the hisG46 mutant site consists of G/C base pairs, extragenic suppression of hisG46 requires mutation at an A/T site. Conversely, the hisG428 site itself contains only A/T base pairs, and extragenic suppression of hisG428 occurs principally at G/C sites. Thus, by examining the mutational spectrum of hisG46 and hisG428 revertants that occurred in the presence and in the absence of histidine, it was possible to determine the effects of histidine starvation on mutations at G/C vs. A/T sites as well as on intragenic sites vs. extragenic suppressor sites. Using DNA-colony hybridization, we determined the DNA sequences of over 1300 hisG46 and hisG428 revertants. Histidine-independent revertants that arose during growth in liquid medium that contained histidine included both intragenic and extragenic suppressor mutations. The relative frequency of such extragenic suppressors was greatly reduced among the His+ revertants that were isolated after 5-10 days of histidine starvation on agar medium. Moreover, DNA sequence analysis revealed striking differences in the distribution of particular transversions at the hisG428 locus in revertants arising after prolonged histidine starvation as compared to those arising after growth in the presence of histidine.  相似文献   

8.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

9.
We have investigated the genotypic changes that lead to expression of a recessive allele at a heterozygous autosomal locus in a human cell line. Mutant clones lacking thymidine kinase activity were derived from a B-cell lymphoblastoid line initially heterozygous at the tk locus, and restriction mapping was performed to detect intragenic structural alterations in the tk gene. In addition, informative molecular markers located elsewhere on chromosome 17 were analysed in order to detect large-scale (multilocus) events. We report that among 325 spontaneous and induced mutants, allele loss was more common than intragenic rearrangements or point mutations; in many cases, loss of heterozygosity appears to have extended well beyond the locus under selection. Cytogenetic analysis of a subset of these mutants showed that expression of the recessive TK-deficient phenotype and the associated loss of heterozygosity for chromosome 17 markers was not typically associated with detectable chromosomal changes.  相似文献   

10.
Summary Genetic analyses have been made to detect recessive suppressor mutations in eight prototrophic strains derived by treating an arginine dependent strain with hydroxylamine. The results indicate that one strain possesses a recessive suppressor, su-1, which maps outside the arg-2 locus and is capable of suppressing auxotrophy conferred by the arg-2 mutation. This suppressor is incapable of suppressing auxotrophy conferred by eight other loci. Prototrophy in the remaining seven strains resulted from either intragenic suppression, reversion, or from a suppressor mutation that is closely linked to the arg-2 locus. The results of heterokaryotic allelic tests with the seven strains indicate that the mutation to prototrophy is recessive.  相似文献   

11.
Expression of recessive mutant phenotypes can occur by a number of different mechanisms. Inactivation of the wild-type allele by base-substitution mutations, frameshift mutations or small deletions occurs at both hemizygous and heterozygous cellular loci, while other events, such as chromosome level rearrangements, may not be detected at hemizygous loci because of inviabiltty of the resulting mutants. In order to assess the relative contribution of each type of mutational event, we isolated a human lymphoblastoid cell line that is heterozygous at the adenine phosphoribosyltransgerase (aprt) locus. The mutation rate for the expression of the mutant phenotype (aprt+/−aprt−/−) was 1.3 × 10−5/cell/ generation. Molecular analysis of the DNA from 26 mutant clones revealed that 19% had undergone deletion of the entire wild-type allele. The aprt heterozygote carries a mutation in the coding sequence of the gene that results in the loss of a restriction site. Analysis of aprt−/− mutants for this restriction fragment length difference reveales that 23% of the mutants contained point mutations or small ((< 100 bp) deletions. The remainder of the mutants (58%) resulted from reduction to homozygosity of the mutant allele. We suggest that, as in tumor cells in vivo, reduction to homozygosity is a major mechanism for the expression of recessive mutant phenotypes in cultured human cells.  相似文献   

12.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42°?C but not at 32°?C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32°?C but not at 42°?C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant.  相似文献   

13.
L. W. Tam  P. A. Lefebvre 《Genetics》1993,135(2):375-384
Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas.  相似文献   

14.
The uncoordinated, egg-laying-defective mutation, unc-93(e1500) III, of the nematode Caenorhabditis elegans spontaneously reverts to a wild-type phenotype. We describe 102 spontaneous and mutagen-induced revertants that define three loci, two extragenic (sup-9 II and sup-10 X) and one intragenic. Genetic analysis suggests that e1500 is a rare visible allele that generates a toxic product and that intragenic reversion, resulting from the generation of null alleles of the unc-93 gene, eliminates the toxic product. We propose that the genetic properties of the unc-93 locus, including the spontaneous reversion of the e1500 mutation, indicate that unc-93 may be a member of a multigene family. The extragenic suppressors also appear to arise as the result of elimination of gene activity; these genes may encode regulatory functions or products that interact with the unc-93 gene product. Genes such as unc-93, sup-9 and sup-10 may be useful for genetic manipulations, including the generation of deficiencies and mutagen testing.  相似文献   

15.
The enhancer of split locus and neurogenesis in Drosophila melanogaster   总被引:11,自引:0,他引:11  
Enhancer of split (E(spl)) is one of a group of so-called neurogenic genes of Drosophila. We describe two different types of E(spl) alleles, dominant and recessive, which exert opposite effects on both central and peripheral nervous system development. The only extant dominant allele determines a reduction in the number of central neurons and peripheral sensilla; this phenotype is not reduced by a normal complement of wild-type alleles. Since animals carrying a triploidy for the wild-type locus develop similar defects, the dominant allele is probably the result of a gain-of-function mutation. Several recessive alleles, obtained as revertants of the dominant allele, are loss-of-function mutations and determine considerable neural hyperplasia. The present evidence suggests that neural defects of E(spl) mutants are due to defective segregation of neural and epidermal lineages, leading to neural commitment of less or of more cells than in the wild type, depending upon whether the animals carry the dominant or any of the recessive alleles, respectively. Therefore, E(spl) formally behaves as a gene switching between neural and epidermal pathways.  相似文献   

16.
C M Asleson  P A Lefebvre 《Genetics》1998,148(2):693-702
Flagellar length in the biflagellate alga Chlamydomonas reinhardtii is under constant and tight regulation. A number of mutants with defects in flagellar length control have been previously identified. Mutations in the three long-flagella (lf) loci result in flagella that are up to three times longer than wild-type length. In this article, we describe the isolation of long-flagellar mutants caused by mutations in a new LF locus, LF4. lf4 mutations were shown to be epistatic to lf1, while lf2 was found to be epistatic to lf4 with regard to the flagellar regeneration defect. Mutations in lf4 were able to suppress the synthetic flagella-less phenotype of the lf1, lf2 double mutant. In addition, we have isolated four extragenic suppressor mutations that suppress the long-flagella phenotype of lf1, lf2, or lf3 double mutants.  相似文献   

17.
Mutations at two loci, which cause an altered mobility of the flagella, affected the central pair microtubule complex of Chlamydomonas reinhardtii flagella. The mutations at both loci primarily affected the C1 microtubule of the complex. Three alleles at the PF16 locus affected the stability of the C1 microtubule in isolated axonemes. This phenotype has allowed us to determine that at least ten polypeptides of the central pair complex are unique to the C1 microtubule. The motility defect was correlated with the failure to assemble three of these ten polypeptides in vivo. The structural gene product of the PF16 locus was a polypeptide with molecular weight 57,000 as shown by analysis of five intragenic revertants and by analysis of axonemes from dikaryon rescue experiments. Three alleles at the PF6 locus affected the assembly of one of the two projections of the C1 microtubule and this projection was formed by at least three polypeptide components, which are a subset of polypeptides missing in isolated pf16 axonemes. No structural gene product has been identified for the PF6 locus. The gene product is probably not one of the identified projection constituents as shown by analysis of dikaryon rescue experiments. Chemical extraction of isolated wild-type axonemes suggests that at least seven polypeptide components are unique to the C2 microtubule.  相似文献   

18.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42° C but not at 32° C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32° C but not at 42° C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant. Received: 3 March 1998 / Accepted: 14 July 1998  相似文献   

19.
UV light induces in Bacillus subtilis met5 ade6 two classes of revertants to prototrophy to methionine which can be easily distinguished by their phenotype: double (Met+Ade+) and solitary (Met+) revertants. Crosses of revertants with the wild type, carried out in transformational experiments, showed that original (direct) mutation met5 is presented in chromosome of double revertants. Consequently they are extragenic suppressor revertants. In the chromosome of solitary revertants Met+ an extragenic suppressor was not detected; reversions Met+ seem to be of an intragenic nature. It is possible to use reversions to prototrophy to methionine as a model to study UV-mutagenesis in suppressor and non-suppressor genes.  相似文献   

20.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号