共查询到20条相似文献,搜索用时 15 毫秒
1.
Birgit Eisenhaber Stephan Eisenhaber Toh Yew Kwang Gerhard Grüber 《Cell cycle (Georgetown, Tex.)》2014,13(12):1912-1917
The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide. 相似文献
2.
Eukaryotic proteins can be post-translationally modified with a glycosylphosphatidylinositol (GPI) membrane anchor. This modification reaction is catalyzed by GPI transamidase (GPI-T), a multimeric, membrane-bound enzyme. Gpi8p, an essential component of GPI-T, shares low sequence similarity with caspases and contains all or part of the enzyme's active site [U. Meyer, M. Benghezal, I. Imhof, A. Conzelmann, Biochemistry 39 (2000) 3461-3471]. Structural predictions suggest that the soluble portion of Gpi8p is divided into two domains: a caspase-like domain that contains the active site machinery and a second, smaller domain of unknown function. Based on these predictions, we evaluated a soluble truncation of Gpi8p (Gpi8(23-306)). Dimerization was investigated due to the known proclivity of caspases to homodimerize; a Gpi8(23-306) homodimer was detected by native gel and confirmed by mass spectrometry and N-terminal sequencing. Mutations at the putative caspase-like dimerization interface disrupted dimer formation. When combined, these results demonstrate an organizational similarity between Gpi8p and caspases. 相似文献
3.
The molecular evolution of asparagine-specific cysteine proteinases, called legumains, from plants and animals was analyzed using newly available related amino acid sequences from lower eukaryotes, bacteria and Archaea. The results suggest that genuine legumains originate from prokaryote pro-legumains. The evolutionary roots of genuine legumains from plants and animals descend from Parabasalia and Alveolata before developing into their respective separate branches headed by Chlorophyta and Placozoa. The branch of legumain-like plant/animal glycosylphosphatidyl inositol transamidases separated from the general evolutionary stem of legumains at the level of lower eukaryotes. Modeling of the 3D structure of a plant genuine legumain underlined the previously suggested similarity of the active site geometry of legumains with caspases, which are Asp-specific bacterial and eukaryote proteinases. 相似文献
4.
5.
Distant homology relationships among proteins with many transmembrane regions (TMs) are difficult to detect as they are clouded by the TMs’ hydrophobic compositional bias and mutational divergence in connecting loops. In the case of several GPI lipid anchor biosynthesis pathway components, the hidden evolutionary signal can be revealed with dissectHMMER, a sequence similarity search tool focusing on fold-critical, high complexity sequence segments. We find that a sequence module with 10 TMs in PIG-W, described as acyl transferase, is homologous to PIG-U, a transamidase subunit without characterized molecular function, and to mannosyltransferases PIG-B, PIG-M, PIG-V and PIG-Z. We conclude that this new, membrane-embedded domain named BindGPILA functions as the unit for recognizing, binding and stabilizing the GPI lipid anchor in a modification-competent form as this appears the only functional aspect shared among all proteins. Thus, PIG-U's likely molecular function is shuttling/presenting the anchor in a productive conformation to the transamidase complex. 相似文献
6.
Caroline Wilson-Zbinden Aline Xavier da Silveira dos Santos Ingrid Stoffel-Studer Aniek van der Vaart Kay Hofmann Fulvio Reggiori Howard Riezman Claudine Kraft Matthias Peter 《Genetics》2015,199(2):475-485
Autophagy is a highly regulated pathway that selectively degrades cellular constituents such as protein aggregates and excessive or damaged organelles. This transport route is characterized by engulfment of the targeted cargo by autophagosomes. The formation of these double-membrane vesicles requires the covalent conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine (PE). However, the origin of PE and the regulation of lipid flux required for autophagy remain poorly understood. Using a genetic screen, we found that the temperature-sensitive growth and intracellular membrane organization defects of mcd4-174 and mcd4-P301L mutants are suppressed by deletion of essential autophagy genes such as ATG1 or ATG7. MCD4 encodes an ethanolamine phosphate transferase that uses PE as a precursor for an essential step in the synthesis of the glycosylphosphatidylinositol (GPI) anchor used to link a subset of plasma membrane proteins to lipid bilayers. Similar to the deletion of CHO2, a gene encoding the enzyme converting PE to phosphatidylcholine (PC), deletion of ATG7 was able to restore lipidation and plasma membrane localization of the GPI-anchored protein Gas1 and normal organization of intracellular membranes. Conversely, overexpression of Cho2 was lethal in mcd4-174 cells grown at restrictive temperature. Quantitative lipid analysis revealed that PE levels are substantially reduced in the mcd4-174 mutant but can be restored by deletion of ATG7 or CHO2. Taken together, these data suggest that autophagy competes for a common PE pool with major cellular PE-consuming pathways such as the GPI anchor and PC synthesis, highlighting the possible interplay between these pathways and the existence of signals that may coordinate PE flux. 相似文献
7.
The GPI (glycosylphosphatidylinositol) transamidase complex catalyses the attachment of GPI anchors to eukaryotic proteins in the lumen of ER (endoplasmic reticulum). The Saccharomyces cerevisiae GPI transamidase complex consists of the subunits yPIG-K (Gpi8p), yPIG-S (Gpi17p), yPIG-T (Gpi16p), yPIG-U (CDC91/GAB1) and yGPAA1. We present the production of the two recombinant proteins yGPAA170–247 and yGPAA170–339 of the luminal domain of S. cerevisiae GPAA1, covering the amino acids 70–247 and 70–339 respectively. The secondary structural content of the stable and monodisperse yGPAA170–247 has been determined to be 28% α-helix and 27% β-sheet. SAXS (small-angle X-ray scattering) data showed that yGPAA170–247 has an Rg (radius of gyration) of 2.72±0.025 nm and Dmax (maximum dimension) of 9.14 nm. These data enabled the determination of the two domain low-resolution solution structure of yGPAA170–247. The large elliptical shape of yGPAA170–247 is connected via a short stalk to the smaller hook-like domain of 0.8 nm in length and 3.5 nm in width. The topological arrangement of yGPAA170–247 will be discussed together with the recently determined low-resolution structures of yPIG-K24–337 and yPIG-S38–467 from S. cerevisiae in the GPI transamidase complex. 相似文献
8.
The three oligosaccharide octyl-S-glycosides Man-α1,6-Man-α1,4-GlcNH2-α1,S-Octyl (19), Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (27) and Man-α1,2-Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (37), related to the GPI anchor of Trypanosoma brucei were prepared by a stepwise and block-wise approach from octyl 2-azido-2-deoxy-3,6-di-O-benzyl-1-thio-α-d-glucopyranoside (8) and octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-1-thio-α-d-mannopyransoside (9). Glucosamine derivative 8 was obtained from 1,3,4,6-tetra-O-acetyl-2-azido-2-desoxy-β-d-glucopyranose (1) in five steps. Mannoside 9 was converted into the corresponding imidate 12 and coupled with 8 to give disaccharide octyl-S-glycoside 13 which was further mannosylated to afford trisaccharide 19 upon deprotection. Likewise, mannoside 9 was galactosylated, converted into the corresponding imidate and coupled with 8 to give trisaccharide 25. Mannosylation of the latter afforded tetrasaccharide 27 upon deprotection. Condensation of 25 with disaccharide imidate 35 gave, upon deprotection of the intermediates, the corresponding pentasaccharide octyl-S-glycoside 37. Saccharides 19, 27 and 37 are suitable substrates for studying the enzymatic glycosylation pattern of the GPI anchor of T. brucei. 相似文献
9.
The biological role of GPI anchors is of paramount importance; however, we are still far from fully understanding the structure-function relationship of these molecules. One major limiting factor has been the tiny quantities available from natural sources; obtaining homogeneous and well-defined GPI structures by synthesis, is both a challenge and an attractive goal. We report here the convergent synthesis of the essential core of the human GPI anchor 1, exploiting a common precursor to obtain the trisaccharidic donor 2 and a novel protecting groups sequence. The final product, prepared for the first time, is biologically active. 相似文献
10.
Rui Chen Jansen J. Knez William C. Merrick M. Edward Medof 《Journal of cellular biochemistry》2002,84(1):68-83
Every protein fated to receive the glycophosphatidylinositol (GPI) anchor post‐translational modification has a C‐terminal GPI‐anchor attachment signal sequence. This signal peptide varies with respect to length, content, and hydrophobicity. With the exception of predictions based on an upstream amino acid triplet termed ω→ω + 2 which designates the site of GPI uptake, there is no information on how the efficiencies of different native signal sequences compare in the transamidation reaction that catalyzes the substitution of the GPI anchor for the C‐terminal peptide. In this study we utilized the placental alkaline phosphatase (PLAP) minigene, miniPLAP, and replaced its native 3′ end‐sequence encoding ω‐2 to the C‐terminus with the corresponding C‐terminal sequences of nine other human GPI‐anchored proteins. The resulting chimeras then were fed into an in vitro processing microsomal system where the cleavages leading to mature product from the nascent preproprotein could be followed by resolution on an SDS–PAGE system after immunoprecipitation. The results showed that the native signal of each protein differed markedly with respect to transamidation efficiency, with the signals of three proteins out‐performing the others in GPI‐anchor addition and those of two proteins being poorer substrates for the GPI transamidase. The data additionally indicated that the hierarchical order of efficiency of transamidation did not depend solely on the combination of permissible residues at ω→ω + 2. J. Cell. Biochem. 84: 68–83, 2002. © 2001 Wiley‐Liss, Inc. 相似文献
11.
《Critical reviews in biochemistry and molecular biology》2013,48(5):446-464
AbstractCancer is second only to heart disease as a cause of death in the US, with a further negative economic impact on society. Over the past decade, details have emerged which suggest that different glycosylphosphatidylinositol (GPI)-anchored proteins are fundamentally involved in a range of cancers. This post-translational glycolipid modification is introduced into proteins via the action of the enzyme GPI transamidase (GPI-T). In 2004, PIG-U, one of the subunits of GPI-T, was identified as an oncogene in bladder cancer, offering a direct connection between GPI-T and cancer. GPI-T is a membrane-bound, multi-subunit enzyme that is poorly understood, due to its structural complexity and membrane solubility. This review is divided into three sections. First, we describe our current understanding of GPI-T, including what is known about each subunit and their roles in the GPI-T reaction. Next, we review the literature connecting GPI-T to different cancers with an emphasis on the variations in GPI-T subunit over-expression. Finally, we discuss some of the GPI-anchored proteins known to be involved in cancer onset and progression and that serve as potential biomarkers for disease-selective therapies. Given that functions for only one of GPI-T’s subunits have been robustly assigned, the separation between healthy and malignant GPI-T activity is poorly defined. 相似文献
12.
The fungal transamidase complex that executes glycosylphosphatidylinositol (GPI) lipid anchoring of precursor proteins has overlapping but distinct sequence specificity compared with the animal system. Therefore, a taxon-specific prediction tool for the recognition of the C-terminal signal in fungal sequences is necessary. We have collected a learning set of fungal precursor protein sequences from the literature and fungal proteomes. Although the general four segment scheme of the recognition signal is maintained also in fungal precursors, there are taxon specificities in details. A fungal big-Pi predictor has been developed for the assessment of query sequence concordance with fungi-specific recognition signal requirements. The sensitivity of this predictor is close to 90%. The rate of false positive prediction is in the range of 0.1%. The fungal big-Pi tool successfully predicts the Gas1 mutation series described by C. Nuoffer and co-workers, and recognizes that the human PLAP C terminus is not a target for the fungal transamidase complex. Lists of potentially GPI lipid anchored proteins for five fungal proteomes have been generated and the hits have been functionally classified. The fungal big-Pi prediction WWW server as well as precursor lists are available at 相似文献
13.
The pathway for glycosylphosphatidylinositol-anchor biosynthesis consists of at least 10 reaction steps. Many of the genes encoding the enzymes and regulators involved in this pathway have been recently cloned and their products characterised. These studies have revealed the common and also different characteristics of glycosylphosphatidyl-inositol biosynthesis enzymes in different organisms, leading to the development of species-specific inhibitors of the pathway. 相似文献
14.
Miesbauer M Bamme T Riemer C Oidtmann B Winklhofer KF Baier M Tatzelt J 《Biochemical and biophysical research communications》2006,341(1):218-224
A hallmark of prion diseases in mammals is a conformational transition of the cellular prion protein (PrP(C)) into a pathogenic isoform termed PrP(Sc). PrP(C) is highly conserved in mammals, moreover, genes of PrP-related proteins have been recently identified in fish. While there is only little sequence homology to mammalian PrP, PrP-related fish proteins were predicted to be modified with N-linked glycans and a C-terminal glycosylphosphatidylinositol (GPI) anchor. We biochemically characterized two PrP-related proteins from zebrafish in cultured cells and show that both zePrP1 and zeSho2 are imported into the endoplasmic reticulum and are post-translationally modified with complex glycans and a C-terminal GPI anchor. 相似文献
15.
尿激酶型纤溶酶原激活物受体作为胞外纤溶酶系统的一员,以糖基磷脂酰肌醇锚的形式固定于细胞膜上,它参与了胞外纤溶酶活性的调节,具有内化受抑制的尿激酶的功能;同时参与了胞外信号的传递;另外它对癌症的临床预后及抗癌转移的研究有重要的意义. 相似文献
16.
Subcellular fractionation is central to a range of cell biological, biochemical and proteomic studies. Purification of nuclear-enriched fractions is critical for studies on nuclear structure and function. Here we show that detergent-based nuclear isolation methods cause the redistribution of proteins associated with plasma membrane lipid rafts into nuclear fractions. The glycosyl-phosphatidylinositol (GPI)-anchored prion protein (PrP(C)) and a GPI-anchored construct of angiotensin converting enzyme (GPI-ACE), as well as the lipid raft markers flotillin-1 and -2, were present in the nuclear fractions derived using three different subcellular fractionation protocols. Incubation of intact cells with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves GPI-anchored proteins from the cell surface, significantly reduced the amount of PrP(C) and GPI-ACE in the nuclear fraction. Buoyant sucrose density gradient centrifugation in the presence of Triton X-100 of the nuclear fraction resulted in a significant proportion of the GPI-anchored proteins being recovered in the low density lipid raft fractions. These data indicate that the nuclear fraction isolated using such subcellular fractionation protocols is contaminated with components of plasma membrane lipid rafts and raises questions as to the integrity of the nuclear fraction isolated by such protocols for use in detailed cell biological studies and proteomics analysis. 相似文献
17.
通过对棉铃虫Helicoverpa armigera (Hübner)幼虫中肠氨肽酶N的克隆和测序,鉴定了1个氨肽酶N基因APN1,其cDNA序列具有3 220个核苷酸,具有3 042 bp的开放阅读框,编码产生1 014个氨基酸的蛋白质。其推定的氨基酸序列具有氨肽酶N所共有的锌结合模体HEXXHX18E和N末端20个氨基酸的疏水性信号序列,但C末端没有糖基磷酯酰肌醇(glycosylphosphatidylinositol,GPI)锚添加信号序列。该氨肽酶N的cDNA序列已提交GenBank,登录号为AY358034。 相似文献
18.
Yoko Takei Kenji Mori Masanao Matsui 《Bioscience, biotechnology, and biochemistry》2013,77(3):637-641
Dehydrodiferulic acid (II), a dimeric lactone obtainable from ferulic acid (I) by oxidative coupling, was converted into two types of Iignans. Hydrogenolysis of II coupled with three subsequent operations gave dl-matairesinol dimethyl ether (IIIb). Acid-catalyzed cyclization of II followed by seven steps afforded dehydrodimethylconidendrin (X) and dehydrodimethylretrodendrin (XI). 相似文献
19.
De Caroli M Lenucci MS Di Sansebastiano GP Dalessandro G De Lorenzo G Piro G 《The Plant journal : for cell and molecular biology》2011,65(2):295-308
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation. 相似文献
20.
Nagata S 《Glycobiology》2005,15(3):281-290
The Xenopus laevis embryonic epidermal lectin (XEEL) is a novel member of a group of lectins including mammalian intelectins, frog oocyte cortical granule lectins, and plasma lectins in lower vertebrates and ascidians. We isolated the XEEL protein from the extract of tailbud embryos by affinity chromatography on a galactose-Sepharose column. The XEEL protein is a homohexamer of 43-kDa N-glycosylated peptide subunits linked by disulfide bonds. It requires Ca(2+) for saccharide binding and shows a higher affinity to pentoses than hexoses and disaccharides. HEK-293T cells transfected with an expression vector containing the XEEL cDNA secrete into the culture medium the recombinant XEEL (rXEEL) that is similar to the purified XEEL in its molecular nature and saccharide-binding properties. Substitution of Asn-192 to Gln removed the N-linked carbohydrate and inhibited secretion of rXEEL but did not abolish the activity to bind to galactose-Sepharose. The embryo's XEEL content, as estimated by western blot analyses, increases during neurula/tailbud stages and declines after 1 week postfertilization. Immunofluorescence and immuno-electron microscopic analyses showed localization of the XEEL protein in a typical secretory granule pathway of nonciliated epidermal cells. When tailbud embryos were cultured in the standard medium, XEEL was accumulated in the medium, indicating secretion of XEEL into the environmental water. The rate of XEEL secretion greatly increased at around the hatching stage and stayed at a high level during the first week after hatching. XEEL may have a role in innate immunity to protect embryos and larvae against pathogenic microorganisms in the environmental water. 相似文献