首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement fragment C5a plays dual roles in the development of experimental allergic asthma. It protects from pulmonary allergy by a regulatory effect on dendritic cells during allergen sensitization, but is proallergic during the effector phase. C5a can bind to two distinct receptors (i.e., C5a receptor and C5a receptor-like 2 [C5L2]). The functional role of C5L2 in vivo remains enigmatic. In this study, we show in two models of OVA- and house dust mite (HDM)-induced experimental allergic asthma that C5L2-deficient mice are protected from the development of airway hyperresponsiveness, Th2 cytokine production, eosinophilic airway inflammation, serum IgE, or mucus production. Surprisingly, HDM-induced experimental asthma in C5L2-deficient mice was associated with increased pulmonary IL-17A production and increased airway neutrophil numbers. To directly assess the role of C5L2 on myeloid dendritic cells (mDCs) during allergen sensitization, we performed single or repeated adoptive transfers of C5L2-deficient mDCs into wild-type mice. HDM-pulsed C5L2-deficient mDCs induced strong Th2 cytokine production, which was associated with marked IFN-γ and IL-17A production, decreased eosinophil numbers, and reduced IgE production as compared with HDM-pulsed mDCs from wild-type mice. HDM stimulation of C5L2(-/-) mDCs in vitro resulted in production of Th17-promoting cytokine IL-23, which was absent in wild-type mDCs. Our findings suggest that C5L2 acts at the mDC/T cell interface to control the development of Th1 and Th17 cells in response to airway HDM exposure. Furthermore, it drives Th2 immune responses independent of mDCs, suggesting a complex role for C5L2 in the development of experimental allergic asthma.  相似文献   

2.
Respiratory allergies represent a failure to generate nonpathogenic responses to innocuous foreign materials. Herein we assessed the role of the sensitizing dose of allergen in this response/nonresponse paradigm, sensitizing BALB/c mice with 5 ng-2 microg of OVA-alum and assessing their responses to repeated OVA aerosol challenge. Mice sensitized with < or = 25 ng of OVA-alum did not develop atopic antibodies, airway hyperresponsiveness (AHR), eosinophilia, or pulmonary Th2 responses, but the 25-ng group animals did develop significant IgA responses. The mice sensitized with 100 ng of OVA-alum developed AHR in the absence of detectable allergic disease, while the mice sensitized with 250 ng-2 microg of OVA/alum developed full-spectrum allergic disease (i.e., eosinophilia, IgE, IgG1, pulmonary Th2 cytokine responses, and AHR). These data indicate that limiting doses of allergen can differentially induce IgA or AHR in the absence of atopic disease in mice.  相似文献   

3.
Lung immune responses to respiratory pathogens and allergens are initiated in early life which will further influence the later onset of asthma. The airway epithelia form the first mechanical physical barrier to allergic stimuli and environmental pollutants, which is also the key regulator in the initiation and development of lung immune response. However, the epithelial regulation mechanisms of early-life lung immune responses are far from clear. Our previous study found that integrin β4 (ITGB4) is decreased in the airway epithelium of asthma patients with specific variant site. ITGB4 deficiency in adult mice aggravated the lung Th2 immune responses and enhanced airway hyper-responsiveness (AHR) with a house dust mite (HDM)-induced asthma model. However, the contribution of ITGB4 to the postnatal lung immune response is still obscure. Here, we further demonstrated that ITGB4 deficiency following birth mediates spontaneous lung inflammation with ILC2 activation and increased infiltration of eosinophils and lymphocytes. Moreover, ITGB4 deficiency regulated thymic stromal lymphopoietin (TSLP) production in airway epithelial cells through EGFR pathways. Neutralization of TSLP inhibited the spontaneous inflammation significantly in ITGB4-deficient mice. Furthermore, we also found that ITGB4 deficiency led to exaggerated lung allergic inflammation response to HDM stress. In all, these findings indicate that ITGB4 deficiency in early life causes spontaneous lung inflammation and induces exaggerated lung inflammation response to HDM aeroallergen.  相似文献   

4.
CpG oligodeoxynucleotides (CpG-ODN) administered during Ag sensitization or before Ag challenge can inhibit allergic pulmonary inflammation and airway hyperreactivity in murine models of asthma. In this study, we investigated whether CpG-ODN can reverse an ongoing allergic pulmonary reaction in a mouse model of asthma. AKR mice were sensitized with conalbumin followed by two intratracheal challenges at weekly intervals. CpG-ODN was administered 24 h after the first Ag challenge. CpG-ODN administration reduced Ag-specific IgE levels, bronchoalveolar lavage fluid eosinophils, mucus production, and airway hyperreactivity. We found that postchallenge CpG-ODN treatment significantly increased IFN-gamma concentrations and decreased IL-13, IL-4, and IL-5 concentrations in bronchoalveolar lavage fluids and spleen cell culture supernatants. Postchallenge CpG-ODN treatment also increased B7.1 mRNA expression and decreased B7.2 mRNA expression in lung tissues. These results suggest that CpG-ODN may have potential for treatment of allergic asthma by suppressing Th2 responses during IgE-dependent allergic airway reactions. The down-regulation of Th2 responses by CPG-ODN may be associated with regulation of the costimulatory factors B7.1 and B7.2.  相似文献   

5.
Qiu H  Kuolee R  Harris G  Zhou H  Miller H  Patel GB  Chen W 《PloS one》2011,6(7):e22004
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen.  相似文献   

6.
In the mucosal immune system, resident dendritic cells are specialized for priming Th2-polarized immunity, whereas the Ag-presenting activity of macrophages has been linked with the development of Th1 phenotype. As an immune switch toward Th1 can protect against Th2-mediated allergic response, this study investigated the capacity of lung macrophages to stimulate Th1 responses during the secondary exposure to inhaled allergen, thereby suppressing Th2-mediated allergic airway inflammation in a murine model of allergic asthma. Following airway macrophage depletion in OVA-sensitized mice, lung T cells defaulted to a phenotype that produced less Th1 (IFN-gamma) and more Th2 (IL-4 and IL-5) cytokines, leading to more severe airway hyperreactivity and inflammation after intranasal Ag challenge. After OVA pulsing and adoptive transfer, lung macrophages selectively promoted a Th1 response in Ag-sensitized recipients and did not induce pulmonary eosinophilia. By contrast, OVA pulsing and adoptive transfer of a lung cell preparation, consisting of dendritic cells, B cells, and macrophages, promoted a Th2 response with an associated inflammatory response that was suppressed when macrophages were present and pretreated with IFN-gamma, but exacerbated when macrophages were depleted before IFN-gamma treatment. In addition, Th1-promoting activity of lung macrophages was not related to the autocrine production of IL-12p40. These results suggest that the Th1-promoting APC activity may be an inherent property of the lung macrophage population, and may play an important role, upon stimulation by IFN-gamma, in antagonizing an ongoing Th2 immunity and Th2-dependent allergic responses.  相似文献   

7.
It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production.  相似文献   

8.
Although both asthmatics and allergic rhinitics develop an acute inflammatory response to lower airway allergen challenge, only asthmatics experience airway obstruction resulting from chronic environmental allergen exposure. Hypothesizing that asthmatic airways have an altered response to chronic allergic inflammation, we compared the effects of repeated low-level exposures to inhaled Alternaria extract in sensitized rats with preexisting chronic postbronchiolitis airway dysfunction versus sensitized controls with normal airways. Measurements of air space (bronchoalveolar lavage) inflammatory cells, airway goblet cells, airway wall collagen, airway wall eosinophils, airway alveolar attachments, and pulmonary physiology were conducted after six weekly exposures to aerosolized saline or Alternaria extract. Postbronchiolitis rats, but not those starting with normal airways, had persistent increases in airway wall eosinophils, goblet cell hyperplasia in small airways, and loss of lung elastic recoil after repeated exposure to aerosolized Alternaria extract. Despite having elevated airway wall eosinophils, the postbronchiolitis rats had no eosinophils in bronchoalveolar lavage at 5 days after the last allergen exposure, suggesting altered egression of tissue eosinophils into the air space. In conclusion, rats with preexisting airway pathology had altered eosinophil trafficking and allergen-induced changes in airway epithelium and lung mechanics that were absent in sensitized control rats that had normal airways before the allergen exposures.  相似文献   

9.
The mammalian target of rapamycin (mTOR) plays an important role in cell growth/differentiation, integrating environmental cues, and regulating immune responses. Our lab previously demonstrated that inhibition of mTOR with rapamycin prevented house dust mite (HDM)-induced allergic asthma in mice. Here, we utilized two treatment protocols to investigate whether rapamycin, compared to the steroid, dexamethasone, could inhibit allergic responses during the later stages of the disease process, namely allergen re-exposure and/or during progression of chronic allergic disease. In protocol 1, BALB/c mice were sensitized to HDM (three i.p. injections) and administered two intranasal HDM exposures. After 6 weeks of rest/recovery, mice were re-exposed to HDM while being treated with rapamycin or dexamethasone. In protocol 2, mice were exposed to HDM for 3 or 6 weeks and treated with rapamycin or dexamethasone during weeks 4–6. Characteristic features of allergic asthma, including IgE, goblet cells, airway hyperreactivity (AHR), inflammatory cells, cytokines/chemokines, and T cell responses were assessed. In protocol 1, both rapamycin and dexamethasone suppressed goblet cells and total CD4+ T cells including activated, effector, and regulatory T cells in the lung tissue, with no effect on AHR or total inflammatory cell numbers in the bronchoalveolar lavage fluid. Rapamycin also suppressed IgE, although IL-4 and eotaxin 1 levels were augmented. In protocol 2, both drugs suppressed total CD4+ T cells, including activated, effector, and regulatory T cells and IgE levels. IL-4, eotaxin, and inflammatory cell numbers were increased after rapamycin and no effect on AHR was observed. Dexamethasone suppressed inflammatory cell numbers, especially eosinophils, but had limited effects on AHR. We conclude that while mTOR signaling is critical during the early phases of allergic asthma, its role is much more limited once disease is established.  相似文献   

10.
T cells and T cell derived cytokines are involved in the complex pathogenesis of asthma. The role of the cytokine IL-18 however, is not clearly defined so far. On the one hand side IL-18 induces Th1-type cytokines and thereby might counter-regulate Th2-mediated allergic asthma. On the other hand IL-18 also bears pro-inflammatory effects possibly enhancing experimental asthma. In order to elucidate the role of IL-18 in allergic pulmonary inflammation typical symptoms were compared after induction of experimental asthma in IL-18−/− and in wild type mice. Asthma was induced using ovalbumin (OVA) as allergen for sensitization and challenge. Sham sensitized and OVA challenged mice served as controls. Bronchoalveolar lavage-fluid cytology, leukocyte infiltration in lung tissues, serum levels of OVA-specific IgE and cytokines, and lung function were analyzed. Clear differences could be observed between control and asthmatic mice, both in wild type and IL-18−/− animals. Surprisingly, no differences were found between asthmatic wild type and IL-18−/− mice. Thus, in contrast to conflicting data in the literature IL-18 did not suppress or enhance the pulmonary allergic immune response in a murine experimental model of asthma.  相似文献   

11.
One of the characteristic features of allergic asthma is recruitment of large numbers of inflammatory cells including eosinophils and Th2 lymphocytes to the lung. This influx of inflammatory cells is thought to be a controlled and coordinated process mediated by chemokines and their receptors. It is thought that distinct, differential expression of chemokine receptors allows selective migration of T cell subtypes in response to the chemokines that bind these receptors. Th2 cells preferentially express CCR8 and migrate selectively to its ligand, CC chemokine ligand (CCL)1. We studied the role of the CCR8 ligand, CCL1, in the specific recruitment of Th2 cells and eosinophils to the lung in a murine model of allergic airway disease. We have demonstrated for the first time that CCL1 is up-regulated in the lung following allergen challenge. Moreover, a neutralizing Ab to CCL1 reduced eosinophil migration to the lung, but had no effect on recruitment of Th2 cells following allergen challenge. In addition, there was no change in airway hyperresponsiveness or levels of Th2 cytokines. In a Th2 cell transfer system of pulmonary inflammation, anti-CCL1 also failed to affect recruitment of Th2 cells to the lung following allergen challenge. Significantly, intratracheal instillation of rCCL1 increased recruitment of eosinophils but not Th2 cells to the lung in allergen-sensitized and -challenged mice. In summary, our results indicate that CCL1 is important for the pulmonary recruitment of eosinophils, rather than allergen-specific Th2 cells, following allergen challenge.  相似文献   

12.
Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells. rgs16 Tg T lymphocytes migrated to CC chemokine ligand 21 or CC chemokine ligand 12 injection sites in the peritoneum, but not to CXC chemokine ligand 12. In a Th2-dependent model of allergic pulmonary inflammation, CD4(+) lymphocytes bearing CCR3, CCR5, and CXCR4 trafficked in reduced numbers to the lung after acute inhalation challenge with allergen (OVA). In contrast, spleens of sensitized and challenged Tg mice contained increased numbers of CD4(+)CCR3(+) cells producing more Th2-type cytokines (IL-4, IL-5, and IL-13), which were associated with increased airway hyperreactivity. Migration of Tg lymphocytes to the lung parenchyma after adoptive transfer was significantly reduced compared with wild-type lymphocytes. Naive lymphocytes displayed normal CCR3 and CXCR4 expression and cytokine responses, and compartmentation in secondary lymphoid organs was normal without allergen challenge. These results suggest that RGS16 may regulate T lymphocyte activation in response to inflammatory stimuli and migration induced by CXCR4, CCR3, and CCR5, but not CCR2 or CCR7.  相似文献   

13.
The innate immune molecule surfactant protein-D (SP-D) plays an important regulatory role in the allergic airway response. In this study, we demonstrate that mice sensitized and challenged with either Aspergillus fumigatus (Af) or OVA have increased SP-D levels in their lung. SP-D mRNA and protein levels in the lung also increased in response to either rIL-4 or rIL-13 treatment. Type II alveolar epithelial cell expression of IL-4Rs in mice sensitized and challenged with Af, and in vitro induction of SP-D mRNA and protein by IL-4 and IL-13, but not IFN-gamma, suggested a direct role of IL-4R-mediated events. The regulatory function of IL-4 and IL-13 was further supported in STAT-6-deficient mice as well as in IL-4/IL-13 double knockout mice that failed to increase SP-D production upon allergen challenge. Interestingly, addition of rSP-D significantly inhibited Af-driven Th2 cell activation in vitro whereas mice lacking SP-D had increased numbers of CD4(+) cells with elevated IL-13 and thymus- and activation-regulated chemokine levels in the lung and showed exaggerated production of IgE and IgG1 following allergic sensitization. We propose that allergen exposure induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which in turn, prevents further activation of sensitized T cells. This negative feedback regulatory circuit could be essential in protecting the airways from inflammatory damage after allergen inhalation.  相似文献   

14.
Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.  相似文献   

15.
Type I allergy is characterized by the development of an initial Th2-dependent allergen-specific IgE response, which is boosted upon a subsequent allergen encounter. Although the immediate symptoms of allergy are mainly IgE-mediated, allergen-specific T cell responses contribute to the late phase as well as to the chronic manifestations of allergy. This study investigates the potential of costimulation blockade with CTLA4Ig and an anti-CD154 mAb for modifying the allergic immune response to the major timothy grass pollen allergen Phl p 5 in a mouse model. BALB/c mice were treated with the costimulation blockers at the time of primary sensitization to the Phl p 5 allergen or at the time of a secondary allergen challenge. Costimulation blockade (CTLA4Ig plus anti-CD154 or anti-CD154 alone) at the time of sensitization prevented the development of allergen-specific IgE, IgM, IgG, and IgA responses compared with untreated but sensitized mice. However, costimulation blockade had no influence on established IgE responses in sensitized mice. Immediate-type reactions as analyzed by a rat basophil leukemia cell mediator release assay were only suppressed by early treatment but not by a costimulation blockade after sensitization. CTLA4Ig given alone failed to suppress both the primary and the secondary allergen-specific Ab responses. Allergen-specific T cell activation was suppressed in mice by early as well as by a late costimulation blockade, suggesting that IgE responses in sensitized mice are independent of T cell help. Our results indicate that T cell suppression alone without active immune regulation or a shifting of the Th2/Th1 balance is not sufficient for the treatment of established IgE responses in an allergy.  相似文献   

16.
House dust mite (HDM) allergy is a frequent inflammatory disease found worldwide. Although allergen-specific CD4(+) Th2 cells orchestrate the HDM allergic response, notably through induction of IgE directed towards mite allergens, recent studies have demonstrated that innate immunity activation also plays a critical role in HDM-induced allergy pathogenesis. HDM allergens can not only be considered proteins that induce adaptive Th2-biased responses in susceptible subjects but also as strong activators of innate immune cells, including skin keratinocytes and airway epithelial cells. The contribution of microbial adjuvant factors, derived from HDM carriers or the environment, is also essential in such cell stimulation. This review highlights how HDM allergens, together with microbial compounds, promote allergic responses through pattern recognition receptor-dependent pathways.  相似文献   

17.
The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation.  相似文献   

18.
Asthma is an inflammatory lung disease that is initiated and directed by Th2 and inhibited by Th1 cytokines. Microbial infections have been shown to prevent allergic responses by inducing the secretion of the Th1 cytokines IL-12 and IFN-gamma. In this study, we examined whether administration of lipoprotein I (OprI) from Pseudomonas aeruginosa could prevent the inflammatory and physiological manifestations of asthma in a murine model of OVA-induced allergic asthma. OprI triggered dendritic cells to make IL-12 and TNF-alpha, with subsequent IFN-gamma production from T cells. OprI stimulation of dendritic cells involved both TLR2 and TLR4. Intranasal coadministration of OprI with OVA allergen resulted in a significant decrease in airway eosinophilia and Th2 (IL-4 and IL-13) cytokines and this effect was sustained after repeated allergen challenge. The immediate suppressive effect of OprI (within 2 days of administration) was accompanied by an increase in Th1 cytokine IFN-gamma production and a significant, but transient infiltration of neutrophils. OprI did not redirect the immune system toward a Th1 response since no increased activation of locally recruited Th1 cells could be observed upon repeated challenge with allergen. Our data show for the first time that a bacterial lipoprotein can modulate allergen-specific Th2 effector cells in an allergic response in vivo for a prolonged period via stimulation of the TLR2/4 signaling pathway.  相似文献   

19.
Eotaxin/CCL11 is a major chemoattractant for eosinophils and Th2 cells. As such, it represents an attractive target in the treatment of allergic disease. The present study addresses the role of eotaxin/CCL11 during acute and chronic allergic airway responses to the fungus Aspergillus fumigatus. Mice lacking the eotaxin gene (Eo-/-) and wild-type mice (Eo+/+) were sensitized to A. fumigatus and received either an intratracheal challenge with soluble A. fumigatus antigens (acute model) or an intratracheal challenge with live A. fumigatus spores or conidia (chronic model). Airway hyperresponsiveness and eosinophil, but not T cell, recruitment were significantly decreased at 24 h after the soluble allergen in A. fumigatus-sensitized Eo-/- mice compared with similarly sensitized Eo+/+ mice. In contrast, the development of chronic allergic airway disease due to A. fumigatus conidia was not altered by the lack of eotaxin. Together, these data suggest that eotaxin initiates allergic airway disease due to A. fumigatus, but this chemokine did not appear to contribute to the maintenance of A. fumigatus-induced allergic airway disease.  相似文献   

20.
PGE(2) has been reported to inhibit allergen-induced airway responses in sensitized human subjects. The aim of this study was to investigate the mechanism of anti-inflammatory actions of PGE(2) in an animal model of allergic asthma. BN rats were sensitized to OVA using Bordetella pertussis as an adjuvant. One week later, an aerosol of OVA was administered. After a further week, animals were anesthetized with urethan, intubated, and subjected to measurements of pulmonary resistance (R(L)) for a period of 8 h after OVA challenge. PGE(2) (1 and 3 micro g in 100 micro l of saline) was administered by insufflation intratracheally 30 min before OVA challenge. The early response was inhibited by PGE(2) (3 micro g). The late response was inhibited by both PGE(2) (1 and 3 micro g). Bronchoalveolar lavage fluid from OVA-challenged rats showed eosinophilia and an increase in the number of cells expressing IL-4 and IL-5 mRNA. These responses were inhibited by PGE(2). Bronchoalveolar lavage fluid levels of cysteinyl-leukotrienes were elevated after OVA challenge and were reduced after PGE(2) to levels comparable with those of sham challenged animals. We conclude that PGE(2) is a potent anti-inflammatory agent that may act by reducing allergen-induced Th2 cell activation and cysteinyl-leukotriene synthesis in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号