首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
S Makino  H Noguchi 《Biopolymers》1971,10(7):1253-1260
The measurements were made for the volume and the sound velocity changes (ΔV and ΔU) on titrating the sodium salt of poly (S-carboxymethyl L -cysteine) with dilute HCl. For the reaction, ? COO? + H+ → ? COOH, ΔV per mole of H+ bound was + 12. 7 ml and +11. 4 ml in salt-free and 0. 2 M NaCl solutions, respectively. Corresponding ΔU was about ?13 cm/sec in salt-free polymer solution where 11.5 mM carboxylate ion reacts with equimolar hydrogen ion. ΔV associated with the coil-to-β transition was found to be +2. 35 ml in H2O and +1. 90 ml in 0. 2 M NaCl per mole of amino acid residue, respectively. These values are larger than those obtained for the coil-to-helix transition of poly (L -glutamic acid). ΔU for the transition was about ?30 cm/sec in salt-free solution of polymer concentration 0.0115 mole/liter. Possible sources of ΔV and ΔU for reaction; coil → β, are (1) the formation of void volume and (2) the changes in the extent of solvation in amide linkage and in side chain.  相似文献   

2.
We have used a combination of densimetric, calorimetric, and uv absorption techniques to obtain a complete thermodynamic characterization for the formation of nucleic acid homoduplexes of known sequence and conformation. The volume change ΔV accompanying the formation of four duplexes was interpreted to reflect changes in hydration based on the electrostriction phenomenon. In 10 mM sodium phosphate buffer at pH 7, the magnitude of the measured ΔV's ranged from ?2.0 to +7.2 ml/mol base pair and followed the order of poly(rA) · poly(dT) ~ poly(dA) · poly(dT) < poly(rA) · poly(dU) ~ poly(rA) · poly(rU). Inclusion of 100 mM NaCl in the same buffer gave the range of ?17.4 to ?2.3 mL/mol base pair and the following order: poly(dA) · poly(dT) < poly(rA) · poly(dT) < poly(rA) · poly(rU) ~ poly(rA) ~ polyr(dU). Standard thermodynamic profiles of forming these duplexes from their corresponding complementary single strands indicated similar free energies that resulted from the compensation of favorable enthalpies with unfavorable entropies along with a similar counterion uptake at both ionic strengths. The differences in these compensating effects of entropy and enthalpy correlated very well with the volume change measurements in a manner suggesting that the homoduplexes in the B conformation are more hydrated than are those in the A conformation. Moreover, the increased thermal stability of these homoduplexes resulted from an increase in the salt concentration corresponding to larger hydration levels as reflected by the ΔV results. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
R D Blake 《Biopolymers》1972,11(4):913-933
On the basis of elementary two-state, ideal solution thermocynamics, a modified expression for the melting of oligo. polynucleotide helices is derived which is applicable to variations in TmN and/or oligomer concentration, Cm with oligomer length, N: ((I)) ΔHr is the enthalpy per helix residue, i.e., per base-pair or base-triplet, Vrf is the thermodynamic “available” or “reaction” volume, in liters/mole of helical residues; and n is the number of polynucleotide strands, e.g., n = 2 for oligo (A)N·2 poly(U)∞. Some earlier treatments have engendered confusion in the interpretation of the “reaction volume,” but with the derivation herein, the entropic origin and physical significance of Vrf is unequivocal. The following approximation was arrived at for the reduction expected in the configurational entropy, ΔSrconf, ∞, for (A)∞·2(U)∞, when the poly(A), strand is substituted for by an equivalent strand of contiguous oligo(A)N,′s: ((II)) This adjustment of ΔSrconf, ∞ represents the source of the coefficient to 1/Tm in expression (I). The expectation that ΔSrconf, N < ΔSrconf, ∞ is due to the effect of releasing normal internucleotide configurational restrictions every Nth residue in one-third of the strands of the (A)N·2(U)∞ helix. Although the reduction in ΔSrconf, ∞ (II) may seem small (i.e., only 5.5% for the tetramer), its effect on the magnitude of Vrf in expression (I) is exponential. Thus, without these considerations the quantitative applicability of earlier expressions is questionable. By examining the variation in TmN with cm for a single N, all assumptions, required for evaluating Vrf or the entropic effects of discontinuities in the (A)N strand are avoided in the determination of a reliable enthalpy. We have therefore examined the system ((III)) and obtained a ΔHr = 12.58 ± 0.08 kcal per mole (A)·2(U) base-triplets between 5 and 2.5°C. That this value for ΔHr is in such excellent agreement with all calorimetric values reported for (A)∞·2(U)∞ suggests that the enthalpy for reaction(III) is not significantly affected by disconnections in the backbone of (A)4·2(U)∞. From (I), Vrf = 6.0 × 10?4 1/mole or 1 Å 3per helical residue. ΔHr°, corrected for residual single-strand stacking in (A)4, is in excellent agreement with that found earlier for (A)1·2(U)∞. A residual heat capacity of 90 kcal(±20) per mole (A)·2(U) base-triplets per °C is deduced from the decrease of ΔHr° with temperature.  相似文献   

4.
T E Gunter  K K Gunter 《Biopolymers》1972,11(3):667-678
Thermal denaturation of DNA's and the corresponding helix–coil transformation of artificial polyribonucleic and polydeoxyribonucleic acids have been studied extensively both theoretically1–13 and experimentally. 14–30 Much less work has been carried out on the properties of these polynucleic acids at high pressure, and in particular, on the presure dependence of the helix–coil transition temperature.31–33 Light-scattering techniques have been used in this study to measure the pressure dependence of the helix–coil transition temperature of the two- and three-stranded helices of polyriboadenylic and polyribouridilic acids and of calf thymus DNA. From the slopes of the transition temperature vs. pressure curves and heats of transition obtained from the literature,20,34 the following volume changes from these helix–coil transitions have been obtained: (a) ?0.96 cc/mole of nucleotide base pairs for the poly (A + U) transition, (b) +0.35 cc/mole of nucleotide base trios for the poly (A + 2U) transition, and (c) +2.7 cc/mole of nucleotide base pairs for the DNA transition. The relative magnitudes and signs of these volume changes which show that poly (A + U) is destabilized by increased pressure, whereas poly (A + 2U) and calf thymus DNA are stabilized by increased pressure, indicates that further development of the helix–coil transition theory for polynucleotides is needed.  相似文献   

5.
The Pressure Dependence of the Helix-Coil Transition Temperature (Tm) of Poly[d(G-C)] was studied as a function of sodium ion concentration in phosphate buffer. The molar volume change of the transition (ΔV) was calculated using the Clapeyron equation and calorimetrically determined enthalpies. The ΔV of the transition increased from +4.80 (±0.56) to +6.03 (±0.76) mL mol?1 as the sodium ion concentration changed from 0.052 to 1.0M. The van't Hoff enthalpy of the transition calculated from the half-width of the differentiated transition displayed negligible pressure dependence: however, the value of this parameter decreased with increasing sodium ion concentration, indicating a decrease in the size of the cooperative unit. The volume change of the transition exhibits the largest magnitude of any double-stranded DNA polymer measured using this technique. For poly[d(G-C)] the magnitude of the change in ΔV with sodium ion concentration (0.94 ± 0.05 mL mol?1) is approximately one-half that observed for either poly[d(A-T)] or poly (dA)·poly(dT). The ΔV values are interpreted as arising from changes in the hydration of the polymer due to the release of counterions and changes in the stacking of the bases of the coil form. As a consequence of solvent electrostriction, the release of counterions makes a net negative contribution to the total ΔV, implying that disruption of the slacking interactions contributes a positive volume change to the total ΔV. The larger magnitude of the ΔV compared with that of other double-stranded polymers may be due in part to the high helix-coil transition temperature of poly[d(G-C)], which will attenuate the contribution of electrostriction to the total volume change. The data in addition show that in the absence of other cellular components, the covalent structure of DNA is stabile under conditions of temperature and pressure more extreme than those experienced by any known organism. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

7.
The heat capacities of the single-stranded and double-stranded forms of polyadenylic acid, polyuridylic acid, and poly(uridylic and adenylic acid) were determined with a drop heat capacity calorimeter. In addition, the temperature dependence of the apparent partial heat capacity (?Cp) was measured with a newly developed differential scanning calorimeter. The calculated ΔCp at 28°C for the transition poly(A)·poly(A) ? 2 poly(A) was found to be 165 ± 24 cal/Kmol-base pair, compared with a value of 140 ± 28 for the transition poly(A)·poly(U) ? poly(A) + poly(U). The temperature dependence of ?Cp of single-stranded poly(U) was consistent with the conclusion that it is totally unstacked at temperatures above 15°C. The temperature dependence of ?Cp of single-stranded poly(A) was used to determine the base-stacking parameters for poly(A). The experimental results are consistent with a stacking enthalpy change of ?8.5 ± 0.1 kcal/mol bases and a cooperativity parameter σ of 0.57 ± 0.03 for the stacking of adenine bases. These results demonstrate that the heat capacity of single-stranded polynucleotides is greater than that of the double-stranded forms. This increased heat capacity is mainly the result of the temperature dependence of the base-stacking interactions in the single-stranded form.  相似文献   

8.
H Krakauer 《Biopolymers》1972,11(4):811-828
The heats of binding of Mg++ ions to poly A, poly U, and to their complexes, in the presence of Na+ ions, have been measurd calorimetrically. In all cases the heat, ΔH(θ), exhibitis a distinct dependence on the extent of binding, θ, and in the cases of poly A and poly U also on the Na+ concentration. The values of ΔH(θ) range from +2 to +3 kcal/mole of Mg++ bound at θ = 0 to 1.3 kcal/mole at θ = 0.5 except in poly A where at θ = 0 ΔH(θ) = ?2 to ?3 kcal/mole. This is interpreted as being due to a facilitation of base stacking by the binding of Mg++. The extent of facilitation is consistent with current estimates of base stacking. A similar effect but of much smaller magnitude is believed to obtain in poly A poly U. An interpretation of the dependence of ΔH(θ) on θ in terms of simple electrostatic interactions, but neglecting solvent effects, was attempted and found to be inadequate.  相似文献   

9.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

10.
Values for the thermodynamic quantities, ΔH° = 11.8 ± 2.0 Kcal/mole and ΔS° = 43.6 ± 6.0 e.u., of the 3-13 helix–coil equilibrium of isolated S-peptide (19 residue N-terminal fragment of ribonuclease A) in aqueous solution (3 m M, 1M NaCl, pD 5.4) have been determined from a joint analysis of the Thr 3γ, Ala 6β, Phe 8meta, and Phe 8para 1H chemical shift vs temperature curves (?7 to 80°C) in several aqueous–trifluorethanol mixtures. Chemical shifts in the coil and in the helix have been determined for up to 16 protons belonging to the 3-13 fragment. Thermodynamic parameters have also been determined for C-peptide (13 residue fragment) and a number of S-peptide derivatives. From the variation of the values of the thermodynamic parameters at pD 2.5, 5.4, and 8.0, a quantitation of the two helix-stabilizing side-chain interactions can be made: (1) Δ(ΔH°) ? 5 Kcal/mole and Δ(ΔS°) ? 18 e.u. for the salt bridge Glu 2? … Arg 10+ and (2) Δ(ΔH°) ? 3 Kcal/mole and Δ(ΔS°) = 9 e.u. for the one in which the His 12+ imidazolium group is involved, presumably a partial stacking with the Phe 8 side chain.  相似文献   

11.
H J Hinz  W Haar  T Ackermann 《Biopolymers》1970,9(8):923-936
The enthalpies of the helix-coil transitions of the ordered polynucleotide systems of poly(inosinic acid)–poly(cytidylic acid) [poly(I + C)], (helical duplex), and of poly (inosinic acid) [poly(I + I + I)], (proposed secondary structure: a triple-stranded helical complex), were determined by using an adiabatic twin-vessel differential calorimeter. Measuring the temperature course of the heat capacity of the aqueous polymer solutions, the enthalpy values for the dissociation of the helical duplex poly (I + C) and the three-stranded helical complex poly(I + 1 + 1), respectively, were obtained by evaluating the additional heat capacity involved in the conformational change of the polynucleotide system in the transition range. The ΔH values of the helix-coil transition of poly (I + C) resulting from the analysis of the calorimetric measurements vary between the limits 6.5 ± 0.4 kcal/mole (I + C) and 8.4 ± 0.4 kcal/mole (I + C). depending on the variation of the cation concentration ranging from 0.063 mole cations kg H2O to 1.003 mole cations/kg H2O. The calorimetric investigation of an aqueous poly I solution (cation concentration 1.0 mole/kg H2O) yielded the enthalpy value ΔH = 1.9 ± 0.4 kcal/mole (I), a result which has been interpreted qualitatively following current models of inter- and intramolecular forces of biologically significant macromolecules. Additional information on the transition behavior of poly(I+ C)Was obtained by ultraviolet and infrared absorption measurements.  相似文献   

12.
A Warashina  A Ikegami 《Biopolymers》1972,11(3):529-547
Thermal and charge induced random coil to α-helix transitions of poly-L -glutamic acid (PGA) were measured by optical rotatory dispersion in various solvents. The data of PGA in 0.1M Nacl were analyzed by the Zimm-Rice theory. Enthalpy and entropy changes for the coil-to-helix transition in the unionized state were obtained: ΔH° = ?1020 ± 100 cal/residue mole; ΔH° = ?3.0 ± 0.4 e.u./residue mole. The initiation parameter, σ, of the Zimm-Rice theory was given by a value of 5 ± 1 × 10-3. Random copolymers of L -glutamic acid and L -alanine containing 10, 30, and 40 molar percents of alanyl residue were synthesized. Stabilities of α-helix of the copolymers were compared to that of PGA. In water and water-ethanol solutions, stabilities of the polymers were almost equal after the simple correction about the ionized charge density of the polymers. In 0.1 M NaCl solution these copolymers showed some deviations from the transition curve of PGA, which would suggest the hydrophobic contribution of the alanyl residues.  相似文献   

13.
Melting parameters of 2U:1A complexes formed by polyuridylic acid [poly(U)] and three adenine dinucleotides, diribonucleoside monophosphonate ApA and diastereoisomers of dideoxyribonucleoside methyl phosphonate [(dApA)1 and (dApA)2], in 1M NaCl and at a number of dinucleotide concentrations were obtained from differential scanning microcalorimetric data and interpreted in terms of the theory of helix–coil equilibrium in oligonucleotide–polynucleotide systems. The apparent binding constant, 1/cm, at 39°C and melting temperatures, Tm, at 1 × 10?3 M dinucleotide concentration indicate the following order of thermodynamic stability of the complexes: 2 poly(U) · (dApA)2 (2.27 × 103M?1, 44.2°C) > 2 poly(U) · (dApA)1 (9.9 × 102M1, 39.2°C) > 2 poly(U) · (ApA) (5.9 × 102M?1, 35.8°C). Corresponding calorimetric enthalpies of melting, ΔHm: 13.5, 12.7, and 12.8 kcal/mol (UUA base triplets) were found to be considerably lower than the van't Hoff enthalpies, ΔHapp: 29.4, 16.2, and 16.2 kcal/mol, respectively, evaluated from the dependence of the melting temperatures on dinucleotide concentration. Self-association of dinucleotides and their simultaneous binding as monomers, dimers, and higher-order associated species is suggested as the most probable cause of the differences between ΔHm and ΔHapp values. The differences in thermodynamic properties of the complexes formed by (dApA)1 and (dApA)2 diastereoisomers are discussed in connection with their known conformational properties. The higher and essentially enthalpic stability of the 2 poly(U) · (dApA)2 complex correlates with a lower degree of intramolecular stacking of the (dApA)2 isomer. The hydrophobically enhanced strong self-association of the latter greatly influences the thermodynamics of its complex formation with poly(U) and results in ΔHappHm = 2.3.  相似文献   

14.
The interaction of silver ions with poly(A) was studied by potentiometric titration, uv spectrophotometry, and stopped-flow spectroscopy. For 0 < rb < 0.5, where rb is moles of silver ion bound per mole of nucleotide base, there exists only one type of binding for poly(A). Using McGhee's theory, the binding parameters, such as intrinsic binding constant, number of sites per nucleotide, and cooperativity, were determined from the potentiometric titration data. Using the stopped-flow method, one relaxation time was observed in 0 < r0 < 0.5, where r0 is the moles of silver ions added per mole of nucleotide base. The concentration dependences of the relaxation time suggest that the binding of silver ions to poly(A) proceeds through the following mechanism: where M is free silver ions, P the free binding sites on poly(A), and C and C′ are two forms of the complex. The nature of the binding of silver ions to poly(A) is also discussed.  相似文献   

15.
Complex formation between poly(U) and adenosine in solutions of salts that stabilize (Na2SO4), destabilize (NaClO4), or have little effect on the water structure (NaCl), as well as the poly(U)·poly(A) interaction in NaClO4, was studied by equilibrium dialysis and uv spectroscopy. At 3°C and neutral pH, Ado·2 poly(U) is formed in 1M NaCl and 0.33M Na2SO4. In NaClO4 solutions under the same conditions, an Ado·poly(U) was found over the whole range of salt concentration investigated (10 mM?1M), which has not been previously observed under any conditions. The Ado-poly(U) was also found in a NaCl/NaClO4 mixture, the transition from the triple- to the double-helical complex occurring within a narrow range of concentration of added NaClO4. In the presence of 1M NaCl this transition is observed on adding as little as 10 mM NaClO4, i.e., at a [ClO]/[Cl?] ratio of about 1:100. However, when NaClO4 is added to a 1M solution of the stabilizing salt Na2SO4, no transition occurs even at a [ClO]/[SO] ratio of 1:4. Investigation of melting curves and uv spectra has shown that in an equimolar mixture of the polynucleotides, only a double-helical poly(U)·poly(A) exists in 1M NaClO4 at low temperatures; this also holds for 1M NaCl. This changes to a triple-helical 2 poly(U)·poly(A) and then dissociates as the temperature increases. At low temperatures and the poly(U)/poly(A) concentration ratio of 2:1, a mixture of 2 poly(U)·poly(A) and poly(U)·poly(A) was observed in 1M NaClO4, in contrast to the case of 1M NaCl. Thus, sodium perchlorate, a strong destabilizer of water structure, promotes formation of double-helical complexes both in the polynucleotide–monomer and the polynucleotide–polynucleotide systems. Beginning with a sufficiently high ionic strength (μ ? 0.9), a further increase in the salt molarity results in an increase of the poly(U)·adenosine melting temperature in both stabilizing and neutral salts and a decrease in the destabilizing salt. In Na2SO4 concentrations higher than 1.2M Ado·2 poly(U) precipitates at room temperature. Analysis of the binding isotherms and melting profiles of the complexes between poly(U) and adenosine according to Hill's model shows that the cooperativity of binding, due to adenosine stacking on poly(U), increases in the order NaClO4 < NaCl < Na2SO4. The free energy of adenosine stacking on the template is similar to that of hydrogen bonding between adenosine and poly(U) and ranges from ?1 to ?2 kcal/mol. The values of ΔHt [the effective enthalpy of adenosine binding to poly(U) next to an occupied site, obtained from the relationship between complex melting temperature and free monomer concentration at the midpoint of the transition] are ?14.2, ?18.3, and ?16.8 kcal/mol for 1M solutions of NaClO4, NaCl, and Na2SO4, respectively. The results indicate that the effects of anions of the salts studied are related to water structure alterations rather than to their direct interaction with the complexes between poly(U) and adenosine.  相似文献   

16.
S. K. Arya  Jen Tsi Yang 《Biopolymers》1975,14(9):1847-1861
Optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of single- and multistranded polyribonucleotides undergo extensive changes on binding of the silver ion. These changes are consistent with the proposition that Ag(I) binds to the heterocyclic bases and not to the phosphate groups of polynucleotides. ORD and CD of silver complexes of poly(A)·poly(U) and double-helical rice dwarf viral RNA display negative Cotton effects when there is more than one Ag(I) per two nucleotide residues in solution. These observations suggest a significant distortion of the double-helical conformation as a result of Ag(I) binding. Silver(I) binding sites of pyrimidine polynucleotides are apparently saturated when there is one Ag(I) per two nucleotide residues and those of purine polynucleotides at one Ag(I) per nucleotide in solution. These data are consistent with the supposition that some Ag(I) binding sites exist on the pyrimidine ring and additional sites on the imidazole ring of polynucleotides. The sedimentation coefficient of poly(A) increases by severalfold when one Ag(I) is present per nucleotide residue. Silver(I) may introduce intra- and interstrand cross-links (through bidentate chelates) in single-stranded polynucleotides, resulting in structures with high sedimentation coefficients. Among the polynucleotides studied, poly(U) was an exception. Silver(I) did not affect the optical properties (absorbance, ORD, and CD) of poly(U) at neutral pH.  相似文献   

17.
S Higuchi  M Tsuboi 《Biopolymers》1966,4(8):837-854
The optical density–temperature profile of double-stranded poly(A + U), triple stranded poly(A + 2U), and double-stranded RNA from rice dwarf virus in solutions with and without poly-L -lysine has been examined. When poly-L -lysine is added, more than one melting temperature Tm is observed for poly(A + U) and poly(A + 2U). One of them is considered to correspond to the melting of the polynucleotide molecule free from poly-L -lysine, and another to the melting of a polynucleotide–poly-L -lysine complex. For rice dwarf virus RNA, the Tm assignable to the complex is not found to be lower than 99°C. In every case, however, the hyperchromicity observed at the Tm of the free poly-nucleotide molecule is lowered linearly as the amount of poly-L -lysine added to the solution increases. This fact is taken as indicating that there is a stoichiometric complex formed. The stoichiometric ratio lysine/nucleotide in each complex is determined by examining the relation between the amount of poly-L -lysine added to the solution and the percentage of hyperchromicity remaining at Tm of the free polynucleotide molecule. The ratio is found to be 2/3 for all of the three complexes. A discussion is given on the molecular conformations of four types of polynucleotide–polylysine complex hitherto found: (A) double-stranded DNA plus poly-L -lysine in which the lyslne/nucleotide ratio is 1, (B) three-stranded RNA [poly(A + 2U)] plus poly-L -lysine in which the ratio is 2/3, (C) double-stranded RNA [poly (A + U) or rice dwarf virus RNA] plus poly-L -lysine in which the ratio is 2/3, and (D) double-stranded RNA [poly(I + C)] plus poly-L -lysine in which the ratio is 1/2.  相似文献   

18.
H Noguchi  J T Yang 《Biopolymers》1971,10(12):2569-2579
The volume increment per amino acid residue for the α-helix to β-form transition of uncharged poly-L -lysine in aqueous solution was 3.8 ml in water and 4.3 ml in 0.2M and 1M NaBr solutions at 26°C, respectively. The sound velocity of the polymer solution was greater with the β-helix than with the β-form, but the difference was less in dilute salt solutions and disappeared in 1 or 2M NaBr solution. Thus, the β poly-L -lysine solution was slightly more compressible than the α-polymer solution, but this difference was diminished with increasing salt concentration. Both the volume change and the change in adiabatic compressibility of the polymer solution suggest that hydrophobic interactions among the lysyl groups in the β-form reduce the amount of “icebergs” surrounding the polymer molecules as compared with the amount originally present with the α-helix. The coil-to-helix transition of poly-L -glutamic acid in aqueous solution was also accompanied by a decrease in sound velocity. This can be attributed to the reduction of the water of hydration which is less compressible than free water.  相似文献   

19.
F Gaskin  J T Yang 《Biopolymers》1971,10(4):631-645
The helix–coil transition of poly-γ-N-carbobenzoxy-L -α,γ-diaminobutyrate (PCLB) and poly-δ-N-carbobenzoxy-L -ornithine (PCLO) in chloroform–dichloroacetic acid mixtures was followed by optical rotatory dispersion. PCLB displays a “normal” temperature-induced transition, but PCLO an “inverse” one. The thermodynamic parameters for helix formation of the two polymers were determined using the Zimm-Bragg theory. The enthalpy for adding an amide residue to a helical region, ΔH, and the initiation factor σ were ΔH = ?180 cal/mole and σ = 9.2 × 10?5 for PCLB and ΔH = +490 cal/mole and σ = 1.9 × 10?5 for PCLO.  相似文献   

20.
S M Cheng  S C Mohr 《Biopolymers》1975,14(3):663-674
Circular dichroism spectroscopy has been used to investigate the influence of DNA molecular size, base composition, and the presence of intercalating agents upon the Ψ transition of DNA brought about by high concentrations of poly(ethylene oxide) and salt (Lerman (1971) Proc. Natl. Acad. Sci. (U.S.) 68 , 1886–1890). A molecular weight of 0.15–3.0 × 106 daltons yields maximum formation of Ψ-DNA. Both the amplitude of the large negative CD band at 265 nm—a chief characteristic of the Ψ state—and the thermal stability of Ψ-DNA increase linearly with increasing mole fraction of guanine plus cytosine in the DNA sample. Either ethidium or proflavine, at concentrations where approximately one dye is bound per 5–10 nucleotide residues, can prevent the transition completely. Striking similarities between the Ψ-DNA produced by poly(ethylene oxide) + salt and the complexes formed between DNA and lysine-rich histone f1 suggest the presence of similar nucleic acid–nucleic acid interactions in both types of condensed phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号