首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dehydroascorbate, an electron affinic metabolite of vitamin C, sensitized Ehrlich ascites tumor cells, in vivo, to radiation and was selectively toxic to V79 Chinese hamster lung cells under hypoxic conditions (without radiation). The radiosensitization may involve both the electron affinic nature of dehydroascorbate as well as its ability to oxidize the intracellular NAD(P)H and non-protein sulfhydryl. Dehydroascorbate's oxidation of NAD(P)H required higher concentrations than other sulfhydryl oxidants such as N-ethylmaleimide and diamide. The oxidation of NAD(P)H by dehydroascorbate could be reversed by glucose. Hypoxic cell radiosensitization of V79 cells in tissue culture by dehydroascorbate could not be easily demonstrated because of the rapid breakdown and appreciable cytotoxicity of the drug at high concentration. The cytotoxicity was found to occur with both high and low densities of V79 cells. With low cell densities small amounts of oxygen did not reduce the cytotoxicity of dehydroascorbate, but virtually eliminated the cytotoxicity of nitroaromatic electron affinic compounds (metronidazole and Ro-07-0582). The cytotoxicity to dense cell suspensions was found to depend upon the type of buffer included in the reaction medium. The maximum cytotoxicity was obtained in buffer free saline. The reduced form of dehydroascorbate, vitamin C, was found to be toxic only under aerobic conditions. The aerobic cytotoxicity could be prevented by the addition of catalase to the growth medium or by an increase in cell density, suggesting it was caused entirely by the production of H2O2 from the oxidation of vitamin C.  相似文献   

2.
2-Cyclohexene-1-one (CHX) occurs as a natural ingredient in some tropical fruits and has been detected as a contaminant in certain artificially sweetened soft drinks. To elucidate its cytotoxic/genotoxic effectiveness, CHX was tested in mammalian cell lines (V79 and Caco-2) and in primary human colon cells in comparison to structurally related 2-alkenals. Inhibition of cell growth (IC(50)) and cytotoxicity (LC(50)) were determined by protein staining with sulforhodamin B (SRB) and by trypan blue exclusion, respectively. DNA damage--both strand breaks and oxidised purines--was quantified by comet assay. Depletion of glutathione was measured in a kinetic assay, based on 5-thio-2-nitrobenzoate (TNB) formation. For CHX, a moderate cytotoxicity was observed after 1h incubation in V79 cells (LC(50): 4.75mM). The 2-alkenals ((E)-2-octenal (OCTE), (2E,4Z)-2,4-hexadienal (HEXDI), (E)-2-nonenal (NONE), (2E,6Z)-2,6-nonadienal (NONDI)) exhibited a distinctly higher cytotoxicity, except for (E)-2-hexenal (HEX) (LC(50): 3.67mM) and cinnamaldehyde (CA) (LC(50): 4.45mM). If the incubation time was prolonged to 24h, an IC(50) of 15microM was obtained for CHX which is well within the range obtained for the 2-alkenals (4 and 17microM). Concentration-dependent DNA damage was observed after 1h incubation with CHX. The respective DC(50) values (concentration inducing DNA damage in 50% of cells) were 272microM (V79) and 455microM (Caco-2). All 2-alkenals were more active under these conditions, except for CA. In primary human colon cells, CHX (800microM, 30min) exhibited a weak, but still significant DNA-damaging potential. Glutathione levels in V79 cells were effectively depleted (down to approximately 20%) by CHX concentrations not yet inducing DNA damage (c < or = 50microM). Incubation with CHX or 2-alkenals (50 and 100microM, 1h), followed by H2O2 treatment (5min, 25microM) resulted in increased levels of oxidised purines in the modified comet assay. CHX and HEX, additionally tested in primary human colon cells, depleted glutathione and increased the sensitivity towards oxidative stress.  相似文献   

3.
We have investigated conditions necessary to quantify the relationship between exposure to a mutagen, ethyl methanesulfonate (EMS), and the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Maximal expression of potential mutants has been achieved by either subculturing at fewer than 5 X 10(5) cells/100-mm dish at 2-day intervals or by daily feeding of cultures. An expression period of 5 days (measure from 1 day after the initiation of treatment with the chemical mutagen) should be allowed, since at least 4 days of expression is required to reach to steady maximum of mutation frequency. It appears that there is no concentration dependence of expression time necessary to reach a plateau of mutation frequency with increasing concentrations of EMS up to 1.6 mg/ml. About 1.25 X 10(5) cells/100-mm dish or fewer should be plated for selection to avoid the loss of mutants which occurs at 1.5 X 10(5) cells/dish, presumably through cross-feeding (metabolic cooperation). The use of 6-thioguanine in hypoxanthine-free medium (supplemented with dialyzed fetal calf serum) appears to be a very stringent condition for selection. Mutation induction by EMS as a function of EMS exposure (EMS concentration X treatment time) increases linearly with concentration up to 12 h. For these treatment periods, the observed mutation frequencies for EMS are directly proportional to mutagen exposure regardless of the duration of the treatment.  相似文献   

4.
The transport of [3H]2-deoxy-D-glucose (2DG) and [3H]3-O-methyl-D-glucose (3-OMG) was elevated in a respiration deficient (NADH coenzyme Q [Co Q] reductase deficient) Chinese hamster lung fibroblast cell line (G14). This sugar transport increase was related to an increased Vmax for 2DG transport, 26.9 +/- 4.2 nmoles 2DG/mg protein/30 sec in the G14 cell line vs 9.5 +/- 0.6 nmoles 2DG/mg protein/30 sec in the parental V79 cell line. No differences were observed in their respective Km values for 2DG transport (3.9 +/- .6 vs. 3.0 +/- .13 mM). Factors which increase sugar transport (e.g., glucose deprivation, serum or insulin exposure) or decrease sugar transport (e.g., serum deprivation) in the parental V79 cell line had little effect on sugar transport in the G14 respiration deficient cell lines. Amino acid transport, specific 125I-insulin binding to cells, and insulin-stimulated DNA synthesis, however, were similar in both cell lines. Exposure of both cell lines to varying concentrations of cycloheximide (0.1-50 micrograms/ml) for 4 h resulted in differential effects on 2DG transport. In the parental cell line (V79) low cycloheximide concentrations resulted in decreased 2DG transport, while higher concentrations (greater than or equal to 1 microgram/ml) resulted in elevated 2DG transport. In the G14 cell line, 2DG transport decreased at all concentrations of cycloheximide (up to 50 micrograms/ml). The data indicate that the G14 mutant has been significantly and specifically affected in the expression of sugar transport activity and in the regulatory controls affecting sugar transport activity.  相似文献   

5.
The radioprotector 2-[aminopropyl)amino] ethanethiol (WR1065), which has been reported to reduce the cytotoxic and mutagenic effects of low LET radiation, was investigated for its ability to protect against low LET (60Co gamma ray) and high LET (fission-spectrum neutron)-induced chromosome damage in V79 cells. Cells were irradiated in G2 phase in the presence or absence of 4 mM WR1065 and were harvested and analyzed 2 h later for chromatid-type aberrations. Irradiation of G2-phase V79 cells in the presence of WR1065 resulted in a 30 to 50% reduction in the frequency of gamma-ray and neutron-induced chromatid-type breaks and exchanges. The effects were found only after exposures of greater than 200 cGy gamma-ray or 50 cGy neutron irradiation. The radioprotector was effective at reducing neutron-induced aberrations after exposures at dose rates of both 10 and 43 cGy/min. Thus the radioprotector WR1065 is an effective anti-clastogenic agent in V79 cells, protecting against both 60Co gamma-ray and fission-spectrum neutron-induced aberrations, when present during irradiation.  相似文献   

6.
We have investigated the induction of mutants resistant to 6-thioguanine (6TG) following 254 nm ultraviolet light exposure of density-inhibited cultures of human diploid fibroblasts. Phenotypic expression of 6TG resistance was maximal within 9 days and remained stable through 19 days after irradiation. In reconstruction studies, complete recovery of 6TG-resistant mutants occurred at cell densities of up to 35 000 cells per 100-mm petri dish. The induced mutation frequency increased linearly with dose over the range of 3–9 J/m2; the D0 of the survival curve was 4.2 J/m2. Delaying subculture to low density for 1.5–24 h after irradiation produced unexpected alterations in induced mutation frequencies. An increase in UV-induced mutations of approximately 3-fold was observed in cultures maintained in confluence for 3 h. This trend was reversed with longer holding times: the mutation frequency declined sharply in cultures held for 6 h compared to the 3-h value, and thereafter showed a steady and gradual diminution to background levels.

These data suggest that the repair of potentíally mutagenic damage is a complex phenomenon which can lead to an increase or decrease in mutation frequency as a function of holding time. Although the decline in mutation frequency observed following longer holding intervals is consistent with the notion of an error-free process, we hypothesize that the increased mutation frequency produced by a short holding period reflects the existence of a cell-mediated process which enhances the mutagenic potential of at least some UV-induced DNA photoproducts.  相似文献   


7.
Toxicity of the sulfhydryl-containing radioprotector dithiothreitol   总被引:1,自引:0,他引:1  
The toxicity of the sulfhydryl-containing radioprotective agent dithiothreitol (DTT) has been studied using Chinese hamster V79 cells growing in monolayer in minimal essential medium containing 10% fetal calf serum. DTT at low concentrations (between 0.4 and 1.0 mM) caused cell killing, but higher concentrations (above 2 mM) or lower concentrations (0.1 mM) did not. This DTT-induced toxicity was prevented by catalase, glutathione, the use of serum-free medium, or lowering incubation temperature; was slightly decreased by dimethyl sulfoxide; and was enhanced by some metal chelators but prevented by desferal, an iron chelator. Experiments involving simultaneous exposure of cells to DTT and H2O2 showed that low concentrations of DTT enhanced H2O2-induced toxicity, but high concentrations of DTT prevented the H2O2 toxicity. These results are consistent with the proposal that toxicity results from autoxidation of DTT to produce H2O2, which in turn reacts via the metal-catalyzed Fenton reaction to produce the ultimate toxin, .OH radicals, although chemical studies show that rates of autoxidation of various sulfhydryl compounds do not correlate with the observed toxicity.  相似文献   

8.
The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is metabolized by alpha-carbon hydroxylation to reactive diazohydroxides and aldehydes. The aim of this study was to determine the relative ability of one NNK-derived aldehyde, 4-oxo-4-(3-pyridyl)butanal, to induce cytotoxicity, sister-chromatid exchanges (SCEs) and DNA single-strand breaks (SSBs) in V79 cells. Our data demonstrate that this aldehyde is cytotoxic for V79 cells (IC50 = 0.4 mM) and induces SCEs at concentrations ranging from 0.01 to 0.5 mM. DNA SSBs were observed at concentrations ranging from 0.05 to 1 mM and were repaired within 8 h. When V79 cells were cultured with primary hepatocytes, there was a reduction in the frequency of SCEs induced by the aldehyde. This suggests that hepatocytes can partially deactivate the aldehyde. Our results suggest that this aldehyde is one of the reactive intermediates generated during NNK metabolism.  相似文献   

9.
Escherichia coli O157:H7, the causative agent of hemorrhagic colitis and hemolytic uremic syndrome, can survive in a highly acidic environment. The acid resistance of this organism, as measured by its ability to survive in low pH, depended on the density of the cells present during the assay. At low cell densities (相似文献   

10.
Multiple rounds of cell division were induced in primary cultured rat hepatocytes in serum-free, modified L-15 medium supplemented with 20 mM NaHCO3 and 10 ng/ml EGF in a 5% CO2/95% air incubator. A 150% increase in cell number and DNA content was observed between day 1 and day 5. The time course of DNA synthesis of hepatocytes cultured in L-15 medium differed from that in DMEM/F12 medium in that there were four peaks of 3H-thymidine incorporation in the L-15 medium, at 60 h, 82 h, 96 h, and 120 h, but only one peak at 48 h in modified DMEM/F12 medium. Labeling studies of the hepatocytes indicated that more than 60% of the cells were stained with antibromodeoxyuridine (BrdU) antibody in the periods of 48-72 h and 72-96 h after plating at densities between 1.5 x 10(5) and 6.0 x 10(5) cells per 35-mm dish. Even at a density of 9.0 x 10(5) cells/dish, about 40% of the cell nuclei were stained with BrdU in the periods of 48-72 h and 72-96 h. In addition, about 20% of the hepatocytes in culture initiated a second round of the cell cycle between 48 and 96 h in culture. Proliferating cells, which were mononucleate with a little cytoplasm, appeared in small clusters or colonies in the culture from day 4. These proliferating cells produced albumin. The addition of essential amino acids to the DMEM/F12 medium enhanced the DNA synthesis of hepatocytes, thus indicating that the higher level of amino acids in L-15 medium may be an important factor in its enhanced ability to support the proliferation of primary cultured rat hepatocytes.  相似文献   

11.
Paracetamol was studied for possible genotoxic effects in V79 Chinese hamster cells. Paracetamol (0.5 mM for 30 min) reduced the rate of DNA synthesis in exponentially growing V79 cells to about 50% of control. A further decrease in the DNA synthesis was seen during the first 30 min after termination of paracetamol exposure. Paracetamol (3 and 10 mM for 2 h) caused a small increase in DNA single-strand breaks, as measured by the alkaline elution technique. After 16 h elution, the amount of DNA retained on the filters was 79 and 70% of controls in cells treated with 3 and 10 mM paracetamol respectively. No indication of DNA damage was seen in measuring the effect of paracetamol (0.25-10 mM for 2 h) on unscheduled DNA synthesis in growth-arrested cultures of V79 cells. At the highest concentrations (3 and 10 mM paracetamol), decreased unscheduled DNA synthesis was observed. Also UV-induced DNA-repair synthesis was inhibited by 3 and 10 mM paracetamol. DNA-repair synthesis was, however, inhibited at a much higher concentration than that inhibiting replicative DNA synthesis. The number of sister-chromatid exchanges (SCE) increased in a dose-dependent manner on 2 h exposure to paracetamol from 1 mM to 10 mM. At the highest dose tested (10 mM), the number of SCE increased to 3 times the control value. Co-culturing the V79 cells with freshly isolated mouse hepatocytes had no further effect on the paracetamol induced sister-chromatid exchanges. The present study indicates that paracetamol may cause DNA damage in V79 cells without any external metabolic activation system added.  相似文献   

12.
B. C. Myhr  J. A. DiPaolo 《Genetics》1975,80(1):157-169
With V79 Chinese hamster cell cultures treated with a mutagen, the maximum frequency of colonies resistant to 8-azaguanine (AZG) was attained when the cells were dispersed after a suitable expression time before adding the selection medium. V79–4 cells were exposed to 500 µM MMS, 7 µM AFAA, or 10 µM MNNG and allowed to multiply before being reseeded at 4 x 104 cells/60 mm dish and selected with 10 µg/ml AZG. Maximum frequencies of 4 x 10-5, 4 x 10-4, and 2.4 x 10-3 were obtained about 100, 130, and 200 hrs after exposure to MMS, AFAA, and MNNG, respectively. The maximum frequencies following MMS or MNNG treatments were about 10-fold greater than those obtained when induction and selection of AZG-resistant colonies were performed in the same culture dish. The reseeding of treated cells eliminated the possibility of metabolic cooperation within mosaic colonies of wild-type and mutant cells and achieved expression of the induced changes before intercolony crossfeeding reduced the frequency of resistant colonies.—AZG-resistant colonies were selected in medium containing dialyzed fetal bovine serum, and the selection medium was replaced at least twice. Both serum dialysis and selection medium replacement were necessary for consistent achievement of background frequencies of resistant colonies near 10-6. Reconstruction experiments with AZG-resistant V79 lines showed that the efficiency of recovery of resistant cells in the selection medium was constant over a range of 0–20 colonies observed/dish. A mixed population of V79 and AZG-resistant cells was also correctly analyzed by the procedure used in mutagenesis studies.  相似文献   

13.
It has been reported that low pH itself can be clastogenic to Chinese hamster ovary cells or mouse lymphoma L5178Y cells. On the other hand, there was no indication that low pH is clastogenic to rat or human lymphocytes. Therefore, in order to evaluate the generality of clastogenicity of low pH conditions, chromosomal aberration tests were carried out on Chinese hamster cell line cells (CHO-K1, CHL, Don and V79 379A) and human cells (HeLa and peripheral lymphocytes used as whole-blood cultures). The cytotoxicity of low pH to each cell line was also evaluated by counting surviving cells. The treatment medium used was Eagle's MEM containing 15 mM MES or Bis-Tris as an organic buffer to maintain the acidity of the medium for the 6-h or 24-h treatment period, and pH adjustment was done with NaOH or HCl. Chromosomal aberrations were induced at pH 6.5 or below in CHO or CHL cells, and the maximum frequency was 24.7% at pH 6.0 or 34% at pH 6.3, respectively. About 5-10% of Don or HeLa cells had aberrations over the range of pH 6.6-6.0 or pH 6.6-6.3, respectively. In V79 379A cells or human lymphocytes, however, aberrant cells amounted to about 8% at near pH 6.0, where cell survival was low (less than 20%). About 90% of aberrations induced in each cell line examined were chromatid-type gaps and breaks. When CHO or CHL cells were treated with acidic medium for 6 h plus 18 h recovery in fresh medium, about 20% of cells had aberrations including chromatid exchanges at pH 5.5 or pH 5.7, respectively. These results indicate that clastogenicity of low pH is a general finding, although the extent of it varies with cell type, and that the clastogenicity is associated with varying extents of cytotoxicity. The mechanisms of clastogenesis at low pH are not known, but might involve inhibition of DNA or protein synthesis or DNA-repair enzymes.  相似文献   

14.
S K Das 《Mutation research》1987,192(1):69-74
Post-treatment with 2 mM caffeine or 2 mM benzamide increased the lethality of MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) treated V79 cells; in the presence of 50 microM deoxycytidine, the caffeine effect was eliminated whereas the benzamide effect remained the same. Combined treatment with caffeine/benzamide alone produced a large amount of cell lethality which was eliminated by 50 microM deoxycytidine. Benzamide produced a strong inhibition of the poly(ADP-ribose)polymerase activity present in cell-free extracts prepared from V79 cells with greater than 90% inhibition at 2 mM concentration; caffeine on the other hand did not produce any substantial inhibition of this activity in the 2-5 mM range. These results further substantiate our earlier hypothesis that the mode of action of caffeine and benzamide on eukaryotic cells containing DNA damage are not identical [S.K. Das, C.C. Lau and A.B. Pardee (1984) Mutation Res., 131, 71-79].  相似文献   

15.
We have derived cells from the Chinese hamster V79 cell line by conditioning them with repeated low doses of hydrogen peroxide (H(2)O(2)). This mimics the physiological condition where cells are repeatedly exposed to low levels of oxidants. In an attempt to characterize such cells, we have exposed both conditioned cells (V79(C)) and the parental V79 cells (V79(P)) to different types of cytotoxic agents and compared their sensitivity to cell killing. The V79(C) cells were found to be stably resistant to killing by agents that produced toxicity through oxidative stress, e.g. H(2)O(2) and cisplatin. It was also found that the lipid peroxidation produced by these agents were considerably lower in the V79(C) cells. Thus, the difference in sensitivity could be due to lesser extent of damage to these cells. V79(C) cells had greater antioxidant defense through higher GSH content and greater activity of enzymes such as Cu-Zn superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which provided protection from damage. Enzyme activities were also assayed at different times after treatment with various cytotoxic agents; there was a relatively large increase in SOD activity which perhaps plays a key role in determining the resistance of the V79(C) cells to killing.  相似文献   

16.
We examined the hypothesis that sodium nitroprusside (SNP) produces cell death in cardiomyocytes through generation of H(2)O(2). Embryonic chick cardiomyocytes in culture were treated with SNP, and cell viability was assessed by trypan blue, MTT assay, and fluorescent activated cell sorting (FACS) analysis. SNP for 24 h induced a significant (P < 0.001) dose-dependent loss of cell viability. On MTT assay, the half-maximal effective concentration was 0.53 mM (confidence interval 0.45-0.59 mM). SNP-treated cardiomyocytes displayed characteristic microscopic features of apoptosis: reduced cell size, nuclear disintegration, and membrane bleb formation. FACS analysis demonstrated SNP-induced apoptosis as well as cell changes consistent with necrosis. The proportion of cells with nuclear changes of apoptosis, identified by propidium iodide (PI) staining of permeabilized cells, increased significantly (P < 0.05) after 0.5 mM SNP for 24 h. The proportion of apoptotic cells, characterized by dual staining of intact cardiomyocytes with fluorescein diacetate and PI, was significantly (P < 0.05) increased after treatment with 0.5 mM SNP for 24 h. SNP metabolism and NO production was suggested by the significant (P < 0.05) increase in nitrite generation in the media with 0.5 mM SNP compared with control. SNP-mediated H(2)O(2) production was implicated in the mechanism of SNP-induced cell death. First, SNP produced a significant (P < 0.05) increase in H(2)O(2) detected in the media after 6 or 24 h of SNP treatment. Second, catalase completely blocked the reduction of cell viability induced by 0.1 mM SNP and significantly (P < 0.05) blunted the effect of 0.5 mM SNP. In contrast, the iron chelator deferoxamine did not alter SNP-induced loss of cell viability. FACS analysis showed that the combination of low concentrations of H(2)O(2) (10(-8) M) that did not alter cell viability augmented SNP-induced apoptosis. In contrast, the amount of necrotic cell death was unchanged by the combination of H(2)O(2) and SNP. H(2)O(2) plus SNP produced a dramatic alteration in cell structure with greater membrane bleb formation, shrunken cells, and more intense cytosolic acridine orange staining and nuclear fragmentation than either agent alone. These data indicate the vulnerability of cardiomyocytes to SNP and suggest the involvement of H(2)O(2) in the pathogenesis of SNP-induced cardiomyocyte cell death. Establishing apoptosis as a component of the type of cell death induced by SNP permitted the recognition that SNP-induced apoptosis was increased by chronic treatment with low (subtoxic) concentrations of H(2)O(2).  相似文献   

17.
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.  相似文献   

18.
We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway.  相似文献   

19.
Kaundal RK  Shah KK  Sharma SS 《Life sciences》2006,79(24):2293-2302
Oxidative stress induced cell injury is reported to contribute to the pathogenesis of cerebral ischemia. Reactive oxygen species such as hydrogen peroxide (H2O2) and superoxide radical along with nitric oxide and peroxynitrite generated during ischemia-reperfusion injury, causes the overactivation of poly (ADP-ribose) polymerase (PARP) leading to neuronal cell death. In the present study we have evaluated the effects of PARP inhibitor, 8-hydroxy-2 methyl-quinazolin-4-[3H]one (NU1025) in H2O2 and 3-morphilinosyndonimine (SIN-1) induced cytotoxicity in PC12 cells as well as in middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Exposure of PC12 cells to H2O2 (0.4 mM) and SIN-1 (0.8 mM) resulted in a significant decrease in cell viability after 6 h. Pretreatment with NU1025 (0.2 mM) restored cell viability to approximately 73 and 82% in H2O2 and SIN-1 injured cells, respectively. In MCAO studies, NU1025 was administered at different time points (1 h before reperfusion, immediately before reperfusion, 3 h after reperfusion and 6 h after reperfusion). NU1025 at 1 and 3 mg/kg reduced total infarct volume to 25% and 45%, respectively, when administered 1 h before reperfusion. NU1025 also produced significant improvement in neurological deficits. Neuroprotection with NU1025 was associated with reduction in PAR accumulation, reversal of brain NAD depletion and reduction in DNA fragmentation. Results of this study demonstrate the neuroprotective activity of NU1025 and suggest its potential in cerebral ischemia.  相似文献   

20.
The cellular uptake, the cytotoxicity and the induction of resistance to 6-thioguanine (6-TG) in Chinese hamster V79 cells exposed to insoluble crystalline trivalent chromium [Cr(III)], Cr2O3, were investigated. Intracytoplasmic Cr2O3 crystalline particle-containing vacuoles were observed by electron microscopy. Concentrations of 50-200 micrograms/ml did not have a marked killing effect but did show a predominantly concentration-dependent inhibitory effect on cell cycle progression with accumulation of cells in G2 phase. Exposure for 18 h to Cr2O3 induced a statistically significant (p less than 0.001) increase in the mutation frequency of up to 10-fold over the controls. Expression time was 6 days for the lowest concentration and 9 days for the highest. Culture of 6-TGr clones in selective media indicated that they were mutants at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus. Examination of growth patterns of Cr2O3-induced mutants showed that, after a delay in reinitiating cell growth, they had varying growth kinetics. The results indicate the ability of a particulate (Cr(III) compound to induce mutation in a mammalian cell system and the usefulness of such systems for detecting genotoxic insoluble metal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号