首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chloroplast-encoded large subunit of the ribulose-1, 5-bisphosphate carboxylase / oxygenase (rbcL) gene was sequenced from 20 species of the colonial Volvocales (the Volvacaceae, Goniaceae, and Tetrabaenaceae) in order to elucidate phylogenetic relationships within the colonial Volvocales. Eleven hundred twenty-eight base pairs in the coding regions of the (rbcL) gene were analyzed by the neighbor-joining (NJ) method using three kinds of distance estimations, as well as by the maximum parsimony (MP) method. A large group comprising all the anisogamous and oogamous volvocacean species was resolved in the MP tree as well as in the NJ trees based on overall and synonymous substitutions. In all the trees constructed, Basichlamys and Tetrabaena (Tetrabaenaceae) constituted a very robust phylogenetic group. Although not supported by high bootstrap values, the MP tree and the NJ tree based on nonsynonymous substitutions indicated that the Tetrabaenaceae is the sister group to the large group comprising the Volvocaceae and the Goniaceae. In addition, the present analysis strongly suggested that Pandorina and Astrephomene are monophyletic genera whereas Eudorina is nonmonophyletic. These results are essentially consistent with the results of the recent cladistic analyses of morphological data. However, the monophyly of the Volvocaceae previously supported by four morphological synapomorphies is found only in the NJ tree based on nonsynonymous substitutions (with very low bootstrap values). The genus Volvox was clearly resolved as a polyphyletic group with V. rousseletii Pocock separated from other species of Volvox in the rbcL gene comparisons, although this genus represents a monophyletic group in the previous morphological analyses. Furthermore, none of the rbcL gene trees supported the monophyly of the Goniaceae; Astrephomene was placed in various phylogenetic positions .  相似文献   

2.
Yamagishiella, based on Pandorina unicocca Rayburn et Starr, is distinguished from Eudorina by its isogamous sexual reproduction, whereas Platydorina exhibits anisogamous sexual reproduction. In the present study, we sequenced the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) genes from five Japanese and North American strains of Y. unicocca (Rayburn et Starr) Nozaki, two Platydorina caudata Kofoid strains, and two strains of Eudorina unicocca G. M. Smith, as well as eight related colonial and unicellular species. Phylogenetic trees were constructed based on these sequence data and on previously published rbcL gene sequences from 23 volvocalean species in order to deduce phylogenetic relationships within the colonial Volvocales, with particular regard to the phylogenetic positions and status of the genera Yamagishiella and Platydorina. Two robust monophyletic groups of the anisogamous/oogamous volvocacean species were resolved in the maximum-parsimony tree as well as in the neighbor-joining distance tree. One of the two groups comprises three species of Volvox section Volvox, whereas the other is composed of other sections of Volvox as well as of all the species of Eudorina and Pleodorina. Platydorina, however, was positioned outside these two monopliyletic groups. Therefore, derivation of the Platydorina lineage may be earlier than that of such anisogamous/oogamous groups, or orgin of “anisogamy with sperm packets” in Platydorina may be independent of sperm packet evolution in Eudorina, Pleodorina, and Volvox. It was also resolved with high bootstrap values that all of the Y. unicocca strains form a monophyletic group positioned outside the large monophyletic group including Eudorina and Pleodorina. These reject the possibility of the reverse evolution of isogamy from anisogamy to give rise to Yamagishiella within the lineage of Eudorina.  相似文献   

3.
Species and varieties in the genus Eudorina Ehrenberg (Volvocaceae, Chlorophyta) were evaluated on the basis of phylogenetic analyses of the large subunit ofribulose-1,5-bis-phosphate carboxylase/oxygenase (rbcL) gene sequences from 14 strains of four Eudorina species, as well as from nine species of Pleodorina and Volvox. The sequence data suggested that 10 of the 14 Eudorina strains form three separate and robust monophyletic groups within the nonmonophyletic genus Eudorina. The first group comprises all three strains of E. unicocca G. M. Smith; the second group consists of one of the E. elegans Ehrenberg var. elegans strains, the E. cylindrica Korshikov strain, and both E. illinoisensis (Kofoid) Pascher strains; and the third group consists of two monoecious varieties of E. elegans [two strains of E. elegans var. synoica Goldstein and one strain of E. elegans var. carteri (G. M. Smith) Goldstein]. In addition, E. illinoisensis represents a poly- or paraphyletic species within the second group. The remaining four strains, all of which are assigned to E. elegans var. elegans, are nonmonophyletic. Although their position in the phylogenetic trees is more or less ambiguous, they are ancestral to other taxa in the large anisogamous/oogamous monophyletic group including Eudorina, Pleodorina, and Volvox (except for sect. Volvox). Thus, the four Eudorina groups resolved in the present molecular phylogeny do not correspond with the species concepts of Eudorina based on vegetative morphology, but they do reflect the results of the previous intercrossing experiments and modes of monoecious and dioecious sexual reproduction.  相似文献   

4.
Four related species in the unicellular volvocalean genus Carteria [C. crucifera Pascher, C. eugametos Mitra, C. inversa (Korshikov) Bourrelly and C. cerasiformis Nozaki et al.] were delineated on the basis of recent comparative light and electron microscopy of a large number of culture strains. However, the species thus delineated may not represent natural or monophyletic entities. In the present study, 1128 base pairs of the chloroplast protein-coding gene (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase gene) from 12 Carteria strains representing the four species as well as from related volvocalean species were analyzed to elucidate the phylogenetic status of the taxonomic or morphologic species of Carteria. The sequence data showed that the 12 Carteria strains exhibit four robust monophyletic groups which are strictly consistent with the four taxonomic species. These results are discussed in relation to contrasting results found in other microalgal genera. It is concluded that phylogenetic analysis, based on DMA sequence data and comparative morphologic characterization of species and using a large number of culture strains, is essential to a natural system of microalgal species taxonomy.  相似文献   

5.
A cladistic analysis was used to deduce the phylogenetic relationships within the colonial Volvocales. Forty-one pairs of characters related to gross morphology and ultrastructure of vegetative colonies as well as asexual and sexual reproduction were analyzed based on parsimony, using the PAUP 3.0 computer program, for 25 species belonging to nine volvocacean and goniacean genera of the colonial Volvocales. Chlamydomonas reinhardtii Dangeard was the outgroup. The strict consensus tree indicated the presence of two monophyletic groups, one composed of all the volvocacean species analyzed in this study and the other containing the goniacean species except for the four-celled species Gonium sociale (Dujardin) Warming. In addition, these two groups constitute a large monophyletic group, to which G. sociale is a sister group. A new combination Tetrabaena socialis (Dujardin) Nozaki et Itoh and a new family Tetrabaenaceae Nozaki et Itoh are thus proposed for G. sociale. In addition, the analysis suggests that the volvocacean genera Eudorina and Pleodorina are paraphyletic groups, respectively, and that the monotypic genus Yamagishiella has no autapomorphic characters and represents primitive features of the anisogamous and oogamous genera of the Volvocaceae. Phylogenetic relationships within the Volvocaceae and the Goniaceae, as well as the various modes of sexual reproduction exhibited by these organisms, are discussed on the basis of the analysis.  相似文献   

6.
The taxonomy of species of Chlorogonium (Volvocales, Chlorophyta) was studied based on comparative light and electron microscopy and DNA sequence data of 23 strains from five major algal culture collections. All of the 23 strains showed pyrenoids under photoautotrophic conditions, but 17 of the 23 exhibited marked reduction in size of pyrenoids, or pyrenoids were absent under photoheterotrophic conditions. The strains could clearly be delineated into six species, C. euchlorum, C. elongatum, C. fusiforme, C. capillatum, C. neglectum, and C. kasakii on the basis of differences in cell shape, number of contractile vacuoles, number and stability of pyrenoids, and ultrastructure of pyrenoids and stigmata. This distinction of species based on morphology was also supported by analyses of rbc L gene sequences. The later strongly showed that each species, C. euchlorum (seven strains), C. elongatum (three strains), and C. capillatum (10 strains), forms a robust clade. Although some morphological differences were noted within different strains of C. euchlorum and C. capillatum, these features were regarded as strain-specific because they were not reflected in the rbc L gene phylogenies. In addition, the rbc L gene trees strongly suggested that C. neglectum and C. kasakii are closely related to each other, consistent with the similarity of the ultrastructure of pyrenoids and stigmata between the two species. However, C. kasakii can be distinguished clearly from C. neglectum by its multiple pyrenoids in the chloroplast and acute anterior and posterior ends in the vegetative cell.  相似文献   

7.
The phylogeny of the green algal Order Dasycladales was inferred by maximum parsimony and Bayesian analyses of chloroplast‐encoded rbcL sequence data. Bayesian analysis suggested that the tribe Acetabularieae is monophyletic but that some genera within the tribe, such as Acetabularia Lamouroux and Polyphysa Lamouroux, are not. Bayesian analysis placed Halicoryne Harvey as the sister group of the Acetabularieae, a result consistent with limited fossil evidence and monophyly of the family Acetabulariaceae but was not supported by significant posterior probability. Bayesian analysis further suggested that the family Dasycladaceae is a paraphyletic assemblage at the base of the Dasycladales radiation, casting doubt on the current family‐level classification. The genus Cymopolia Lamouroux was inferred to be the basal‐most dasycladalean genus, which is also consistent with limited fossil evidence. Unweighted parsimony analyses provided similar results but primarily differed by the sister relationship between Halicoryne Lamouroux and Bornetella Munier‐Chalmas, thus supporting the monophyly of neither the families Acetabulariaceae nor Dasycladaceae. This result, however, was supported by low bootstrap values. Low transition‐to‐transversion ratios, potential loss of phylogenetic signal in third codon positions, and the 550 million year old Dasycladalean lineage suggest that dasyclad rbcL sequences may be saturated due to deep time divergences. Such factors may have contributed to inaccurate reconstruction of phylogeny, particularly with respect to potential inconsistency of parsimony analyses. Regardless, strongly negative g1 values were obtained in analyses including all codon positions, indicating the presence of considerable phylogenetic signal in dasyclad rbcL sequence data. Morphological features relevant to the separation of taxa within the Dasycladales and the possible effects of extinction on phylogeny reconstruction are discussed relative to the inferred phylogenies.  相似文献   

8.
This review covers essentially all aspects of the organisms in the green algal family Volvocaceae and suggests the genetic history of the various steps in their evolution from their unicellular ancestors.  相似文献   

9.
Morphological details of asexual and sexual reproduction in Gonium Quadratum Pringsheim ex Nozaki (Goniaceae, Chlorophyta) were observed by light microscopy, based on clonal cultured materials originating from Nepal. In asexual reproduction, the alga exhibited two different patterns of cell cleavage during formation of 8-and 16-celled daughter colonies. Sexual reproduction was heterothallic and isogamous. The gametes bore a tubular mating structure (bilateral mating papilla) at the base of the flagella, and the papillae of the two gametes. The germinating zygote gave rise to four biflagellate gone cells joined in a colony (germ colony). Possible phylogenetic relationships within the Goniaceae at the species level are outlined, mainly on the basis of reproduction characteristics.  相似文献   

10.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

11.
The sequence data from the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase ( rbc L) gene and 18S ribosomal DNA (small subunit) of taxa in the freshwater rhodophyte order Batrachospermales were used to construct phylogenetic hypotheses. Taxa examined in this study represent four families, eight genera, and six sections of the genus Batrachospermum . In addition, Rhododraparnaldia oregonica Sheath, Whittick et Cole, was included in the analysis because it shares particular ultrastructural, reproductive, and morphological characteristics with members of the Batrachospermales and Acrochaetiales. The trees generated from each gene, as well as a combined data set, were largely congruent. Rhododraparnaldia consistently occurs on an early branch within the Acrochaetiales – Palmariales clade and does not appear to be a member of the Batrachospermales. In addition, Thorea violacea Bory de St. Vincent was not closely related to the other taxa of the Batrachospermales in all trees and hence the family Thoreaceae does not appear to be a natural grouping within this order. All other taxa analyzed, which are presently classified within this order, formed a monophyletic clade in most analyses. Psilosiphon scoparium Entwisle was not closely allied with the taxa of the Lemaneaceae, lending support to the newly proposed family Psilosiphonaceae. Sequence data from the remaining taxa of the Lemaneaceae support the concept of a derived monophyletic clade. The genus Batrachospermum appears to comprise many morphologically similar but distantly related taxa, which will need further investigation to resolve their taxonomic status. Tuomeya, Sirodotia and Nothocladus are retained at the generic level until further data are obtained.  相似文献   

12.
The complete 18S rRNA gene sequences of three Oocystis A. Braun species (Oocystaceae) and three other chlorococcal algae, Tetrachlorella alternans (G. M. Smith) Korš. (Scenedesmaceae), Makinoella tosaensis Okada (Scenedesmaceae), and Amphikrikos cf. nanus (Fott & Heynig) Hind. (Chlorellaceae) were determined and subjected to four different phylogenetic analysis algorithms. Independent of the reconstruction method, these taxa clustered together as a monophyletic group (Oocystaceae) within the Trebouxiophyceae. This result was supported by high bootstrap values. A comparison of morphological data with the phylogenetic reconstructions indicated that the evolution of Oocystaceae was accompanied by a reduction in the number of plastids. This study fully supports the taxonomic assignment of the Oocystaceae as a distinct family. The diacritic criterion that the cell walls are composed of several cellulose layers with perpendicular fibril orientations is in accordance with the molecular data.  相似文献   

13.
We sequenced the nuclear-encoded small-subunit ribosomal RNA gene (18S rDNA) of Chaetosphaeridium globosum (Nordst.) Klebahn, a microscopic freshwater epiphytic chlorophyte, to assess its phylogenetic affinities in the Chlorophyta. A phylogenetic analysis of a broad sampling of green algal taxa and Chaetosphaeridium confirmed that this alga is a member of the Charophyceae (Streptophyta) as earlier microscopical studies had suggested. However, more detailed phylogenetic analyses of the streptophyte lineage showed that contrary to expectations based on the ultrastructure of the zoospores, the presence of a unique type of setae, the oogamous mode of reproduction, and the occurrence of oscillatory rotations of the cytoplasm, Chaetosphaeridium and Coleochaete are not closely related and do not form a monophyletic clade. Instead, Chaetosphaeridium represents an early branch in the streptophyte lineage that had a near-simultaneous origin as the Charalean clade and a clade formed by all remaining streptophytes examined ( Klebsormidium, Coleochaete, Chlorokybus, Zygnematales, and bryophytes). All phylogenetic inference methods used (neighbor-joining analysis of Kimura distances, maximum likelihood, and maximum parsimony) resulted in essentially the same tree topology. No Group I introns were found in the 18S rDNA coding region of Chaetosphaeridium. Our molecular phylogenetic analysis of Chaetosphaeridium supports a recent cladistic classification of the Streptobionta by Kenrick and Crane in which Chaetosphaeridium is placed in a monotypic division and class, Chaetosphaeridiophyta and Chaetosphaeridiophyceae, respectively.  相似文献   

14.
To better assess the current state of phaeophycean phylogeny, we compiled all currently available rbc L, 18S, and 26S rDNA sequences from the EMBL/GenBank database and added 21 new rbc L sequences of our own. We then developed three new alignments designed to maximize taxon sampling while minimizing information loss due to partial sequences. Phylogenetic analyses were performed on separate and combined data sets (with and without taxa from the sister classes Tribophyceae and Phaeothamniophyceae as outgroups) using a variety of assumption sets, tree-drawing algorithms (parsimony, neighbor joining, and likelihood), and resampling methods (bootstrap, decay, jackknife). Partition homogeneity testing (PHT) by codon position within rbc L showed that all positions could be used despite mild third position saturation. PHT by gene and domain within rDNA showed that the 26S D1 and D2 regions do not enhance phylogenetic signal even when combined with the 18S. The rbc L and rDNA (excluding the 26S D1 and D2) could be combined under PHT. The topology of the combined tree was the same as that of the rbc L tree alone, but bootstrap support was consistently higher in the combined analysis, applied to more branches, and enabled the establishment of sister group relationships among six orders. Although the taxon sampling for the combination tree was lower ( n = 22) than for individual gene analyses ( n = 58 for rbc L and n = 59 for rDNA), results show that the Laminariales (previously reported) and Sphacelariales (new) are both paraphyletic. Choristocarpus tenellus (Kützing) Zanardini is the most basal phaeophyte and the Dictyotales the most basal order. In contrast, the Laminariales sensu stricto ( s.s. ) and Ectocarpales sensu lato ( s.l. ) are the most derived. For phylogenetic studies in the Phaeophyceae, rbc L has more resolving power than rDNA, though the reason for this is unclear based on the fact that both genes are highly conserved.  相似文献   

15.
Vegetative cells of Gonium pectorale have a fine structure similar to that of Chlamydomonas. In addition, three zones comprise an extracellular matrix; a fibrillar sheath and tripartite boundary surround individual cells, and a fragile capsule zone surrounds the entire colony. Cytokinesis is accomplished by a phycoplast and cleavage furrow. The flagellar apparatus of the immature vegetative cell of this colonial alga is similar to that of Chlamydomonas, but the basal bodies are slightly separated at their proximal ends. The four microtubular rootlets alternate between two and four members. During development, the basal bodies become further separated and nearly parallel. The distal fiber is stretched, but it remains attached to both basal bodies. At maturity, the basal bodies of peripheral cells of the colony have rotated in opposite directions on their longitudinal axes resulting in a displacement of the distal fiber to one side, an asymmetrical orientation of the rootlets and loss of 180° rotational symmetry. Central cells remain similar to Chlamydomonas in that basal bodies do not rotate, rootlets are cruciate, the distal fiber remains medially inserted and 180° rotational symmetry is conserved. A “pin-wheel” configuration of flagellar pairs and the orientation of parallel rootlets toward the colony perimeter probably accounts for the rotation of the colonies during forward swimming. In addition, these ultrastructural features support the traditional placement of G. pectorale as an intermediate between the unicellular Chlamydomonas and the more complex colonial volvocalean genera.  相似文献   

16.
基于78种直翅目昆虫的18S rRNA基因全序列构建了直翅目各主要类群间的系统发育关系。本研究的结果支持直翅目的单系性,但不支持蝗亚目和螽亚目各自的单系性;直翅目下除蜢总科和蝗总科外各总科的划分多数与Otte系统相一致;蜢总科的单系性得不到支持;蝗总科的剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,各物种间的遗传距离差异不大,应合并为一科,即蝗科;本研究支持将Otte系统中蚱总科和螽蟖总科下各亚科级阶元提升为科级阶元;18S rRNA基因全序列可以作为划分科级阶元的工具,当位于同一分支上互成姐妹群的类群间的遗传距离超过1%时,这几个类群属于不同的科;但由于其在进化上的保守性,18S rRNA基因只能用于纲目等高级阶元间关系的研究,而由其获得的总科以下阶元间的关系并不可靠。  相似文献   

17.
The coding sequence for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) from Codium fragile (Suringar) Hariot chloroplast DNA is 1428 bp in length and contains a 1813-bp group II intron. The only other organisms in which introns have been found in the rbcL gene are Euglena and Astasia. The Codium intron likely had a separate origin from the Euglena and Astasia introns, based on comparisons of intron sizes and sequences. Phylogenetic analyses of rbcL nucleotide and amino acid sequences place Codium between Chlorella and two Chlamydomonas spp., indicating that the Chlorophyceae may be polyphyletic.  相似文献   

18.
对隶属于3亚目、5次目、20科、23属共25个种类的唇口目(裸唇纲)苔藓虫18S rRNA基因部分序列进行了序列测定.结合从GenBank中获得的该类群其它7个种类的18S rRNA基因同源序列,以序列分析软件对其序列组成和变异进行了比较分析;同时,以羽苔虫(被唇纲)和管孔苔虫(窄唇纲)为外类群,以邻接法和最大简约法重建了它们的系统发生树,分析了该目主要类群系统发生关系.序列分析结果显示:经比对后序列长度为884 bp,其中保守位点241个,可变位点643个,简约信息位点357个;A,T,C和G 4碱基平均含量分别为23.8%、22.8%、24.4%和28.9%.分子系统树表明:本研究所有有囊类构成1个单系群,其中檐胞次目的几种苔虫位于皮壳次目内部;无囊类形成1个多系群,其中的亚目级(新唇口亚目)和次目级分类阶元(枝室次目、假软壁次目和隐壁次目)也都为多系发生,这些结果与前人的分子系统学研究结果大体一致,而与传统的形态分类体系间存在明显的冲突.  相似文献   

19.
Mastocarpus papillatus (C. Agardh) Kütz. is a common intertidal red alga occurring along the west coast of North America from Baja California to Alaska. Sequencing of both the chloroplast‐encoded rbcL gene and the nuclear ribosomal internal transcribed spacer (ITS) regions of ~200 specimens from California to Alaska revealed that M. papillatus is actually a complex of at least five species. All five species have high bootstrap support in phylogenetic analyses of both genetic regions, and in the case of the ITS marker, the species also have distinctive patterns of indels. Three of the species are localized in the mid‐ to upper intertidal, whereas two of the species occur in the low intertidal. The species also have different geographic ranges that overlap in the Vancouver Island area of British Columbia. No distinctive, reliable morphological differences were observed among the species. Although a variety of names are available for species in the complex, it is not yet clear which name goes with which species. As part of the survey, I also sequenced other species of Mastocarpus in the northeast Pacific region, and I provide new distribution records for M. jardinii ( J. Agardh) J. A. West and for a nonpapillate and probably undescribed species of Mastocarpus.  相似文献   

20.
Phylogenetic analyses of 19 strains representing five species of Eudorina, one strain of Pleodorina indica, and seven strains of Yamagishiella unicocca were carried out by sequencing the internal transcribed spacer region (ITS 1 and ITS 2) of the nuclear ribosomal DNA (rDNA) repeats. The sequence data resolved five phylogenetic groups, one consisting of Y. unicocca and the other four encompassing all the Eudorina species. Two isolates, Eudorina sp. (ASW 05157) and Pleodorina indica (ASW 05153), were of uncertain affiliation. Whereas one monophyletic group included strains of E. elegans only, the other strains of E. elegans appeared alongside E. cylindrica, E. illinoisensis, and E. unicocca var. unicocca in the other Eudorina clades. The distribution pattern of the carotenoid loroxanthin ([3R,3'R,6'R]-β,ε-carotene-3,19,3'-triol), a systematically useful biochemical marker within chlorophycean flagellates, was shown to match the evaluated molecular data. Whereas it was either totally absent or universally present in six of the deduced phylogenetic lines, it occurred randomly in the E. elegans clade containing only E. elegans isolates. The results substantiated the current hypothesis that the unique vegetative morphology of E. elegans has independently arisen at various times during evolution and that it is not a marker of a monophyletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号