首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Packed gel envelopes were constructed as simple, compact reactors for removing nitrogen from wastewater. Each packed gel envelope consisted of two plate gels with a spacer in between. Nitrosomonas europaea and Paracoccus denitrificans were co-immobilized in the plate gels, and ethanol, serving as an electron donor for denitrification, was injected into the internal spaces of the envelopes. The external surfaces of the envelopes were in contact with ammonia-containing wastewater; the N. europaea present in the gels oxidized the ammonia to nitrite aerobically. On the other hand, the internal surfaces of the envelopes were in contact with the ethanol solution, which P. denitrificans used to reduce the nitrite to nitrogen gas anaerobically. In this way, the reactor using the packed gel envelopes removed ammonia from wastewater in a single step. When artificial wastewater containing 200 mg-N/L was treated using the reactor using eight envelopes, the ammonia was removed by the reactor without accumulating nitrite or ethanol. This simple system exhibited high rates of nitrification (ammonia to nitrite; 1.9 kg-N/day for 1m(3) of reactor volume) and nitrogen removal (ammonia to nitrogen gas; 1.6 kg-N/day). It is presumed that these high rates were achieved as a consequence of cooperation between the N. europaea and P. denitrificans present in the gels and the efficient uptake and exhaust of gases leading to the smooth conversion of ammonia to nitrogen gas.  相似文献   

2.
To control nitrogen such as ammonia in a rearing water of aquatic animals, we developed new bioreactor capable of both nitrification and denitrification. It was consisted of gel-plate immobilized microorganisms and a biodegradable plastic plate composed of three kind of poly(lactic acid) as an energy source of denitrification. When batch treatment experiment by the bioreactor was continuously carried out with an artificial rearing water containing ammonia, nitrogen-removal rate of the bioreactor was approximately 3 g-N/d/m2-gel surface and the activity was maintained for over 3 month without additional energy source. Therefore, the bioreactor would be effective to control nitrogen concentration in rearing water of a closed water circulating system for aquatic animals.  相似文献   

3.
A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge.  相似文献   

4.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

5.
A bioreactor system with 30 packed gel envelopes was installed in a thermal power plant for the removal of nitrogen from ammonia-containing desulfurization wastewater. Each envelope consisted of double-sided plate gels containing Nitrosomonas europaea and Paracoccus denitrificans cells with an internal space in between for injecting an electron donor. The envelope can remove ammonia from wastewater in a single step. When the wastewater was continuously treated with the bioreactor system, it removed 95.0% of the total nitrogen in the inlet, and the total nitrogen concentration in the outlet was below 9.0 mg L−1. The maximum nitrogen removal rate was 6.0 g day−1 per square meter of the gel area. The maximum utilization efficiency of the injected ethanol for denitrification was 98.4%, and the total organic carbon concentration in the outflow was maintained at a low level. Since the bioreactor system could use the electron donor effectively, it was not necessary to use an additional aerobic tank to remove the electron donor and a settling tank to segregate the surplus sludge containing bacteria from wastewater. Our concept of using packed gel envelopes would be highly effective for constructing a simple and efficient nitrogen removal system capable of simultaneous nitrification and denitrification.  相似文献   

6.
AIMS: To develop a laboratory-scale autotrophic membrane-immobilized biofilm reactor to remove nitrogen from drinking water. METHODS AND RESULTS: A polyvinyl alcohol (PVA) immobilized biofilm, attached to the surface of a silicone tube, was used as the basis of a bioreactor for simultaneous nitrification and denitrification of water. The bioreactor was aerated with air to supply oxygen for nitrification. Pure hydrogen was supplied to the silicone tube and diffused through the membrane wall to feed the biofilm for autotrophic denitrification. The bioreactor was effective for the simultaneous nitrification and denitrification of water after a short period of acclimation, while the biofilm exhibited good resistance to the inhibition of denitrification by dissolved oxygen; the denitrification rate decreased by only 8% as the dissolved oxygen increased from 2 mg l(-1) to saturation. CONCLUSIONS: By using PVA crosslinked with sodium nitrate to entrap nitrifying and denitrifying sludge on the surface of a silicone tube, a novel bioreactor for simultaneous nitrification and denitrification was developed. In addition to performing as an immobilizing agent to strengthen the biofilm, PVA protected the denitrifying microorganisms to reduce the inhibition by dissolved oxygen under aerobic condition. Therefore, nitrification and denitrification occurred simultaneously within the biofilm. Furthermore, the immobilization technique shortened the acclimation period of the bioreactor. SIGNIFICANCE AND IMPACT OF THE STUDY: The described space saving and simple to operate bioreactor for nitrogen removal performed autotrophic denitrification to solve the problem of residual carbon in heterotrophic denitrification, and thus is suitable for removing nitrogen from drinking water.  相似文献   

7.
Wastewater microorganisms of nitrification and denitrification were cultivated to compose two biofilm modules, termed the permeable support bioreactor (PSB) and the membrane feeding substrate bioreactor (MFSB). PSB and MFSB were combined in a single tank to develop a double-biofilm reactor, which was used to treat nitrogen contaminants in wastewater. With a membrane supplement of substrates (O(2) and CH(3)OH), the D.O. and COD levels were at a low value in the bulk solution thus inhibitive effects between nitrification and denitrification were minimized. Simultaneous nitrification/denitrification was conducted in the reactor and the double-biofilm reactor achieved high nitrification and denitrification efficiency, of 96.5% and 82%, respectively.  相似文献   

8.
Effect of low dissolved oxygen on simultaneous nitrification and denitrification was evaluated in a membrane bioreactor treating black water. A fully aerobic membrane bioreactor was operated at a sludge age of 60 days under three low dissolved oxygen (DO) levels below 0.5mg/L. It sustained effective simultaneous nitrification/denitrification for the entire observation period. Nitrification was incomplete due to adverse effects of a number of factors such as low DO level, SMPs inhibition, alkalinity limitation, etc. DO impact was more significant on denitrification: Nitrate was fully removed at low DO level but the removal was gradually reduced as DO was increased to 0.5mg/L. Nitrogen removal remained optimal within the DO range of 0.15-0.35 mg/L. Experimental results were calibrated and simulated by model evaluation with the same model coefficients. The model defined improved mass transfer with lower affinity coefficients for oxygen and nitrate as compared to conventional activated sludge.  相似文献   

9.
A hydrogenotrophic denitrification system was evaluated in removing nitrate from synthetic aquaculture wastewater for recirculation purposes. Two membrane bioreactor (MBR) systems, namely, aeration–denitrification system (ADS) and denitrification–aeration system (DAS) were studied with 50 mg/L of influent concentrations for both organic matter and nitrate nitrogen. The DAS achieved better removal efficiency of 91.4% total nitrogen (T-N) and denitrification rate of 363.7 mg/L.day at a HRT of 3 h compared to ADS. Further, there was no nitrite accumulation in the DAS effluent. The nitrite accumulation in ADS effluent was lesser when CO2 was used as buffer rather than K2HPO4 and KH2PO4. Estimation of kinetic parameters of hydrogenotrophic bacteria indicated lesser sludge production compared to heterotrophic denitrification. In the DAS, membrane fouling was nonexistent in the aeration reactor that was used to produce the recirculating effluent. On the contrary, membrane fouling was observed in the denitrification reactor that supplied hydrogen to the mixed liquor. Thus, this study demonstrated DAS capability in maintaining the acceptable water quality appropriate for aquaculture, in which a closed recirculating system is typically used.  相似文献   

10.
To maximize nitrogen utilization rates during nitrification and denitrification in a simultaneous reaction for direct nitrogen removal from ammonia–nitrogen in a single reactor, two different carriers were applied that immobilized nitrifiers and denitrifiers separately. With the optimized DO concentration and mixing ratio of immobilization carriers, ammonium–nitrogen was successfully removed as designed until the middle phase of treatment where nitrogen removal rate was higher than 83% of the theoretical value, although an imbalance between nitrification and denitrification occurred at a later phase of treatment where residual nitrate–nitrogen concentration was less than 2 mg/l. The new approach using two different carriers to immobilize nitrifiers and denitrifiers separately was proved useful for controlling both nitrification and denitrification rates, enabling the utilization of maximum treatment ability of both nitrifiers and denitrifiers in a single reactor for direct nitrogen removal from ammonium–nitrogen.  相似文献   

11.
Novel aerobic granular sludge membrane bioreactor (GMBR) was established by combining aerobic granular sludge technology with membrane bioreactor (MBR). GMBR showed good organics removal and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater. When influent total organic carbon (TOC) was 56.8-132.6 mg/L, the TOC removal of GMBR was 84.7-91.9%. When influent ammonia nitrogen was 28.1-38.4 mg/L, the ammonia nitrogen removal was 85.4-99.7%, and the total nitrogen removal was 41.7-78.4%. Moreover, batch experiments of sludge with different particle size demonstrated that: (1) flocculent sludge under aerobic condition almost have no denitrification capacity, (2) SND capacity was caused by the granular sludge, and (3) the denitrification rate and total nitrogen removal efficiency were enhanced with the increased particle size. In addition, study on the sludge morphology stability in GMBR showed that, although some granular sludge larger than 0.9 mm disaggregated at the beginning of operation, the granular sludge was able to maintain the stability of its granular morphology, and at the end of operation, the amount of granular sludge (larger than 0.18 mm) stabilized in GMBR was more than 56-62% of the total sludge concentration. The partial disaggregation of large granules is closely associated with the change of operating mode from sequencing batch reactor (SBR) system to MBR system.  相似文献   

12.
Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH 4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40–50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5–40 times higher than those of other bacteria with the same ability.  相似文献   

13.
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO(3)(-) accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes.  相似文献   

14.
A full-scale pre-denitrification process treating cokes wastewater containing toxic compounds such as phenols, cyanides and thiocyanate has shown good performance in carbon and nitrogen removal. However, field operators have been having trouble with its instability without being able to identify the causes. To clarify the main cause of these sudden failures of the process, comprehensive studies were conducted on the pre-denitrification process using a lab-scale reactor system with real cokes wastewater. First, the shock loading effects of three major pollutants were investigated individually. As the loading amount of phenol increased to 600 mg/L, more COD, TOC and phenol itself were flowed into the aerobic reactor, but phenol itself did not inhibit nitrification and denitrification, owing to the effect of dilution and its rapid biodegradation. Higher loading of ammonia or thiocyanate slightly enhanced the removal efficiency of organic matter, but caused the final discharge concentration of total nitrogen to be above its legal limit of 60 mg-N/L. Meanwhile, continuous inflow of abnormal wastewater collected during unstable operation of the full-scale pre-denitrification process, caused a sudden failure of nitrogen removal in the lab-scale process, like the removal pattern of the full-scale one. This was discovered to be due to the lack of inorganic carbon in the aerobic reactor where autotrophic nitrification occurs.  相似文献   

15.
Wan D  Liu H  Liu R  Qu J 《Bioresource technology》2011,102(23):10803-10809
A novel combined system established for nitrate removal from aqueous solution consisted of two parts: sulfur autotrophic denitrification and bio-electrochemical denitrification based on proton-exchange membrane electrodialysis (PEMED). The system was operated at various hydraulic retention times (HRT) and current intensities. Its optimum operation condition was also determined. The combined process had pH adjustment thus generating less nitrite than PEMED process. The denitrification rate of sulfur autotrophic part was dependent on HRT, while shorter HRT could reduce the sulfate generated by the sulfur autotrophic process. The denitrification rate of PEMED process depended on the applied current. For 32 ± 1 mg-N/L nitrate in influent, the optimum operation parameters of combined process were: HRT 2 h; applied current 350 mA. The combined reactor could achieve 95.8% nitrate removal without nitrite accumulation, the pH of effluent kept neutral and the sulfate of effluent was 202.1 mg/L, lower than the drinking water standard in China.  相似文献   

16.
A novel biological treatment system, which contains two types of membrane modules in a single tank, was developed for simultaneous nitrification and denitrification. Both of the modules were fed with the substrates on the tube side of the silicone tubes by diffusing them to the biofilms which form on the surface of the tubes. One module was fed with methanol for denitrification and the other one was fed with pure oxygen for nitrification. As a result, the interference of organic carbon on nitrification, and that of oxygen on denitrification, were both hindered by the diffusion barriers (biofilms), thereby allowing two different niches for nitrifiers and denitrifiers to coexist in a single tank. Besides saving space and the amount of alkalinity required for nitrification, this system also produced low residual chemical oxygen demand (COD) and high nitrogen removal rates (2.9-3.4 gN m-2 d-1 of surface area of membrane).  相似文献   

17.
The transformation of nitrogen compounds in lake and estuarine sediments incubated in the dark was analyzed in a continuous-flowthrough system. The inflowing water contained NO(3), and by determination of the isotopic composition of the N(2), NO(3), and NH(4) pools in the outflowing water, it was possible to quantify the following reactions: total NO(3) uptake, denitrification based on NO(3) from the overlying water, nitrification, coupled nitrification-denitrification, and N mineralization. In sediment cores from both lake and estuarine environments, benthic microphytes assimilated NO(3) and NH(4) for a period of 25 to 60 h after darkening. Under steady-state conditions in the dark, denitrification of NO(3) originating from the overlying water accounted for 91 to 171 mumol m h in the lake sediments and for 131 to 182 mumol m h in the estuarine sediments, corresponding to approximately 100% of the total NO(3) uptake for both sediments. It seems that high NO(3) uptake by benthic microphytes in the initial dark period may have been misinterpreted in earlier investigations as dissimilatory reduction to ammonium. The rates of coupled nitrification-denitrification within the sediments contributed to 10% of the total denitrification at steady state in the dark, and total nitrification was only twice as high as the coupled process.  相似文献   

18.
The biological nitrification-denitrification process is used extensively for removal of ammonia nitrogen from wastewaters. Saves in aeration, organic matter (for denitrification) and surplus sludge are achievable if nitrite accumulation is possible in the nitrification step. In this paper, operational parameters were studied for each process for maximum nitrite accumulation in the nitrification step and nitrite adaptation in the denitrification step. Nitrite accumulation during nitrification can be controlled by the dissolved oxygen (DO) concentration, presenting a maximum of 65% at around 0.7 mg DO/L. Denitrification can be adapted to nitrite and the process is stable if nitrite in the reactor is keep low. The performance of a continuous stirred tank reactor (CSTR) and an up flow sludge blanket reactor (USB) were compared. Once the operational parameters were established, a CSTR for nitrification and an USB reactor for denitrification were operated in series for 25 days. The process was stable and a steady state was maintained for 20 days, and 93.5% of overall nitrogen removal was achieved in the nitrification-denitrification via the nitrite process.  相似文献   

19.
In situ nitrogen removal in phase-separate bioreactor landfill   总被引:1,自引:0,他引:1  
Long Y  Guo QW  Fang CR  Zhu YM  Shen DS 《Bioresource technology》2008,99(13):5352-5361
The feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM). Furthermore, the methanogenic and nitrifying reactors used aged refuse as bulk agents. The results showed that in situ nitrogen removal was viable by phase-separation in the bioreactor landfill. In total 75.8 and 47.5 g of nitrogen were, respectively, removed from the NBL and the BL throughout the experiment. The methanogenic reactor used the aged refuse as medium was highly effective in removing organic matter from the fresh leachate. Furthermore, the aged refuse was also suitable to use as in situ nitrification medium. The degradation of fresh refuse was accelerated by denitrification in the initial stage (namely the initial hydrolyzing stage) despite being delayed by denitrification in a long-term operation.  相似文献   

20.
Fu Z  Yang F  Zhou F  Xue Y 《Bioresource technology》2009,100(1):136-141
A modified membrane bioreactor (MBR) system has been developed to evaluate the efficiency of nutrient removal in treating synthetic high strength water. This study examined the effect of influent COD/N ratio on this system. Results showed that above 95.0% removal efficiencies of organic matter were achieved; indicating COD removal was irrespective of COD/N ratio. The average removal efficiencies of total nitrogen (TN) and phosphate (PO(4)(3-)-P) with a COD/N ratio of 9.3 were the highest at 90.6% and 90.5%, respectively. Furthermore, TN removal was primarily based on simultaneous nitrification and denitrification (SND) process occurred in the aerobic zone. Decreased COD/N ratios to 7.0 and 5.3, TN removal efficiencies in steady-states were 69.3% and 71.2%, respectively. Both aerobic SND and conventional biological nitrification/denitrification contributed to nitrogen removal and the latter played dominant effect. PO(4)(3-)-P-release and uptake process ceased in steady-states of COD/N 7.0 and 5.3, which decreased its removal efficiency significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号