首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qiao S  Tuohimaa P 《FEBS letters》2004,577(3):451-454
FAS and FACL3 are enzymes of fatty acid metabolism. In our previous studies, we found that FAS and FACL3 genes were vitamin D3-regulated and involved in the antiproliferative effect of 1alpha,25(OH)2D3 in the human prostate cancer LNCaP cells. Here, we elucidated the mechanism behind the downregulation of FAS expression by vitamin D3. Triacsin C, an inhibitor of FACL3 activity, completely abolished the downregulation of FAS expression by vitamin D3, whereas an inhibitor of FAS activity, cerulenin, had no significant effect on the upregulation of FACL3 expression by vitamin D3 in LNCaP cells. In human prostate cancer PC3 cells, in which FACL3 expression is not regulated by vitamin D3, no regulation of FAS expression was seen. This suggests that the downregulation of FAS expression by vitamin D3 is mediated by vitamin D3 upregulation of FACL3 expression. Myristic acid, one of the substrates preferential for FACL3, enhanced the repression of FAS expression by vitamin D3. The action of myristic acid was abrogated by inhibition of FACL3 activity, suggesting that the enhancement in the downregulation of FAS expression by vitamin D3 is due to the formation of myristoyl-CoA. The data suggest that vitamin D3-repression of FAS mRNA expression is the consequence of feedback inhibition of FAS expression by long chain fatty acyl-CoAs, which are formed by FACL3 during its upregulation by vitamin D3 in human prostate cancer LNCaP cells.  相似文献   

2.
We found previously that long-chain fatty-acid-CoA ligase 3 (FACL3), a critical enzyme for activation of long-chain fatty acids, was upregulated by 1α, 25(OH)(2)D(3) at an mRNA and enzyme activity levels in prostate cancer cells. Our further study indicated that the FACL3 mediated 1α,25(OH)(2)D(3) inhibition of fatty acid synthase (FAS), which is associated with many cancers, including prostate cancer. In the current study, we investigated an FACL3 protein expression and its regulation by 1α, 25(OH)(2)D(3) and its synthetic analogs EB1089 and CB1093 in prostate cancer cells. The results showed that the expression of an FACL3 protein was upregulated by 1α, 25(OH)(2)D(3), EB1089 and CB1093 in LNCaP cells, consistent with their upregulation of an FACL3 mRNA expression. In addition, the FACL3 expression was found to be markedly low at both mRNA and protein levels in more transformed prostate cancer PC-3 and DU145 cells compared with less transformed LNCaP cells. The data suggest that decreased FACL3 expression might be associated with a more malignant phenotype of prostate cancer.  相似文献   

3.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

4.
Accumulating data suggest that local production of 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) could provide an important cell growth regulatory mechanism in an autocrine fashion in prostate cells. Previously, we demonstrated a differential expression of 1alpha-OHase enzymatic activity among noncancerous (PZHPV-7) and cancer cells (PC-3, DU145, LNCaP), which appears to correlate with 1alpha-OHase m-RNA synthesis and its promoter activities. Since it is well-established that EGF regulates the proliferation of prostate cells via autocrine and paracrine loops and 1alpha,25(OH)(2)D inhibites prostate cell proliferation, we investigated if EGF also regulated 1alpha-OHase expression in prostate cells. We found that EGF upregulated 1alpha-OHase promoter activity and enzyme activity in PZ-HPV-7 and that 1alpha,25(OH)(2)D(3) inhibited EGF-dependent up-regulation of 1alpha-OHase enzymatic activity. Moreover, the EGF-stimulated promoter activity was inhibited 70% by the MAPKK inhibitor, PD98059, suggesting that the MAPK pathway may be one pathway involved in the regulation of prostatic 1alpha-OHase by EGF to increase1alpha,25(OH)(2)D synthesis as a feedback regulator of cell growth. Because EGF has no effect on 1alpha-OHase promoter activity in LNCaP cells, we propose that the ability of EGF to stimulate 1alpha,25(OH)(2)D synthesis may be abolished or diminished in cancer cells.  相似文献   

5.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

6.
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.  相似文献   

7.
8.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.  相似文献   

9.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   

10.
The role of vitamin D in prostate cancer   总被引:3,自引:0,他引:3  
Zhao XY  Feldman D 《Steroids》2001,66(3-5):293-300
Prostate cancer is the second leading cause of cancer deaths in men in the United States. Developing new treatment strategies is critical to improving the health of men. This article will be a general review of the field with a focus on research from our laboratory. Our research has focused on four areas in which we have pursued the possible use of 1alpha,25(OH)(2)D(3) and its analogs to treat prostate cancer: 1) The ability of 1alpha,25(OH)(2)D(3) to up-regulate androgen receptors in LNCaP human prostate cancer cells. The implications of this finding on 1alpha,25(OH)(2)D(3)'s ability to inhibit cell growth in vivo are unclear at present.2) The reasons for an inability of 1alpha,25(OH)(2)D(3) to inhibit DU 145 prostate cancer cell growth were explored. We found that combination of an imidazole drug, Liarozole, with 1alpha,25(OH)(2)D(3) was capable of inhibiting DU 145 cell growth.3) A number of low-calcemic vitamin D analogs exhibit potent anti-proliferative activity on prostate cancer cells. We have developed a novel approach using the yeast two-hybrid system to screen for potent analogs.4) The results of a clinical trial of 1alpha,25(OH)(2)D(3) treatment of patients with early recurrent prostate cancer. We provide preliminary evidence that 1alpha,25(OH)(2)D(3) may be effective in slowing the rate of PSA rise in selected cases of prostate cancer.In conclusion, we believe that 1alpha,25(OH)(2)D(3) has a role in the treatment and/or prevention strategies being developed for prostate cancer. However, to increase antiproliferative potency without increasing side-effects, the use of less calcemic analogs appears to be the most reasonable approach.  相似文献   

11.
Boyan BD  Wang L  Wong KL  Jo H  Schwartz Z 《Steroids》2006,71(4):286-290
1,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] acts on chondrocytes and osteoblasts through traditional nuclear Vitamin D receptor (VDR) mechanisms as well as through rapid actions on plasma membranes that initiate intracellular signaling pathways. We have investigated the mechanisms involved in activation of protein kinase C (PKC) and downstream biological responses that depend on the latter pathway. These studies show that PKC activation depends on presence of a membrane receptor ERp60 and rapid increases in phospholipase A(2) (PLA(2)) activity. Cells that are responsive to 1alpha,25(OH)(2)D(3) express PLA(2) activating protein (PLAA), suggesting a link between ERp60 and PLA(2). Increased PLA(2) results in increased arachidonic acid release and formation of lysophospholipid, which then activates phospholipase C beta (PLCbeta), leading to rapid formation of inositol-trisphosphate (IP3) and diacylglycerol (DAG). PLA(2), PLC, and DAG are all associated with lipid rafts including caveolae in many cells, suggesting that the caveolar environment may be an important mediator of PKC activation by 1alpha,25(OH)(2)D(3). Here, we use the VDR(-/-) mouse costochondral cartilage growth plate to examine the expression of ERp60 and PLAA in vivo in 1alpha,25(OH)(2)D(3)-responsive hypertrophic chondrocytes (growth zone cells) and in resting zone cells that do not respond to this Vitamin D metabolite in vitro. In addition, we determined if intact lipid rafts are required for the response of rat costochondral cartilage growth zone cells to 1alpha,25(OH)(2)D(3). The results show that ERp60 and PLAA are localized to 1alpha,25(OH)(2)D(3)-responsive growth zone cells and metaphyseal osteoblasts, even in VDR(-/-) mice. Disruption of lipid rafts using beta-cyclodextrin blocks the activation of PKC by 1alpha,25(OH)(2)D(3) and reduces the ability of 1alpha,25(OH)(2)D(3) to regulate [(35)S]-sulfate incorporation.  相似文献   

12.
Vitamin D-24-hydroxylase (CYP24) is one of the enzymes responsible for vitamin D metabolism. CYP24 catalyzes the conversion of 25-hydroxyvitamin D(3) [25(OH)D(3)] to 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] in the kidney. CYP24 is also involved in the breakdown of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], the active form of vitamin D(3). In this study, we generated transgenic (Tg) rats constitutively expressing CYP24 gene to investigate the biological role of CYP24 in vivo. Surprisingly, the Tg rats showed a significantly low level of plasma 24,25(OH)(2)D(3). Furthermore, the Tg rats developed albuminuria and hyperlipidemia shortly after weaning. The plasma lipid profile revealed that all lipoprotein fractions were elevated in the Tg rats. Also, the Tg rats showed atherosclerotic lesions in the aorta, which greatly progressed with high-fat and high-cholesterol feeding. These unexpected results suggest that CYP24 is involved in functions other than the regulation of vitamin D metabolism.  相似文献   

13.
The active vitamin D(3)-metabolite 1,25(OH)(2)D(3) inhibits the interleukin 4/granulocyte-macrophage colony-stimulating factor (IL-4/GM-CSF)-induced differentiation of human monocytes into dendritic cells without altering survival. Colony-stimulating factor 1 (CSF-1) is an important survival factor for cells of the monocytic lineage. We therefore investigated whether the inhibitory activity of 1,25(OH)(2)D(3) is paralleled by a regulation of CSF-1 and its receptor. Purified human monocytes were cultured together with IL-4/GM-CSF in the presence of 1,25(OH)(2)D(3), its analogue tacalcitol, the low-affinity vitamin D receptor ligand 24,25(OH)(2)D(3), or the solvent ethanol for up to 5 days. Expression of CSF-1, CSF-1R, and GM-CSF mRNA was measured by RT-PCR. Protein secretion for CSF-1 was measured by ELISA, expression of CSF-1R by flow cytometry. The results showed that 1,25(OH)(2)D(3) and tacalcitol significantly up-regulated CSF-1 mRNA-expression and protein secretion in a dose-dependent manner. The effect of 1,25(OH)(2)D(3) occurred already after 1h of pre-treatment. In contrast, CSF-1R mRNA- and cell surface-expression was down-regulated simultaneously. The solvent ethanol and 24,25(OH)(2)D(3) were without effect. GM-CSF mRNA expression was not modulated in 1,25(OH)(2)D(3)-treated cells. These data point towards a distinct and specific regulation of CSF-1 and its receptor by 1,25(OH)(2)D(3) and its analogue tacalcitol in human monocytes which parallels the inhibition of differentiation into dendritic cells without altering survival.  相似文献   

14.
Normal prostate epithelial cells are acutely sensitive to the antiproliferative action of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), whilst prostate cancer cell lines and primary cultures display a range of sensitivities. We hypothesised that key antiproliferative target genes of the Vitamin D receptor (VDR) were repressed by an epigenetic mechanism in 1alpha,25(OH)(2)D(3)-insensitive cells. Supportively, we found elevated nuclear receptor co-repressor and reduced VDR expression correlated with reduced sensitivity to the antiproliferative action of 1alpha,25(OH)(2)D(3). Furthermore, the growth suppressive actions of 1alpha,25(OH)(2)D(3) can be restored by co-treatment with low doses of histone deacetylation inhibitors, such as trichostatin A (TSA) to induce apoptosis. Examination of the regulation of VDR target genes revealed that co-treatment of 1alpha,25(OH)(2)D(3) plus TSA co-operatively upregulated GADD45alpha. Similarly in a primary cancer cell culture, the regulation of appeared GADD45alpha repressed. These data demonstrate that prostate cancer cells utilise a mechanism involving deacetylation to suppress the responsiveness of VDR target genes and thus ablate the antiproliferative action of 1alpha,25(OH)(2)D(3).  相似文献   

15.
16.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

17.
18.
Prostate cancer is the most commonly diagnosed cancer in the majority of western countries. Due to their antiproliferative and proapoptotic activity, vitamin D analogues have been introduced recently as an experimental therapy for prostate cancer. Clusterin (CLU) is a glycoprotein that has two known isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is pro-apoptotic, and a secretory form (sCLU) is pro-survival. In this study, we analyzed whether proapoptotic and antiproliferative effects of 1,25(OH)2D3 on LNCaP prostate cancer cells are modulated by expression of sCLU. Using colony forming assay, we studied the effect of treatment with different doses of 1,25(OH)2D3 (10−6, 10−7, 10−10 M) on proliferation of LNCaP cells that were stable transfected and over-express sCLU (LNT-1) as compared to empty vector-transfected cells (LN/C). We also measured apoptosis using TUNEL assay. sCLU over-expression protected against both antiproliferative (30%) and proapoptotic (15%) effects of 1,25(OH)2D3, although this effect was statistically not significant. In conclusion, our findings demonstrate that expression of sCLU modulates growth regulatory effects of 1,25(OH)2D3 in prostate cancer indicating that CLU interferes with vitamin D signalling pathways.  相似文献   

19.
Prostate cancer (PCa) cells express vitamin D receptors (VDR) and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits the growth of epithelial cells derived from normal, benign prostate hyperplasia, and PCa as well as established PCa cell lines. The growth inhibitory effects of 1,25(OH)(2)D(3) in cell cultures are modulated tissue by the presence and activities of the enzymes 25-hydroxyvitamin D(3) 24-hydroxylase which initiates the inactivation of 1,25(OH)(2)D(3) and 25-hydroxyvitamin D(3) 1alpha-hydroxylase which catalyses its synthesis. In LNCaP human PCa cells 1,25(OH)(2)D(3) exerts antiproliferative activity predominantly by cell cycle arrest through the induction of IGF binding protein-3 (IGFBP-3) expression which in turn increases the levels of the cell cycle inhibitor p21 leading to growth arrest. cDNA microarray analyses of primary prostatic epithelial and PCa cells reveal that 1,25(OH)(2)D(3) regulates many target genes expanding the possible mechanisms of its anticancer activity and raising new potential therapeutic targets. Some of these target genes are involved in growth regulation, protection from oxidative stress, and cell-cell and cell-matrix interactions. A small clinical trial has shown that 1,25(OH)(2)D(3) can slow the rate of prostate specific antigen (PSA) rise in PCa patients demonstrating proof of concept that 1,25(OH)(2)D(3) exhibits therapeutic activity in men with PCa. Further investigation of the role of calcitriol and its analogs for the therapy or chemoprevention of PCa is currently being pursued.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号