首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified the enteric neuron types expressing immunoreactivity for the calcium-binding protein calbindin D28k (CALB) in cryostat sections and whole-mount preparations of myenteric (MP) and submucosal (SMP) plexuses of sheep ileum. We wished to determine whether CALB-IR in the sheep enteric nervous system was expressed in Dogiel type II cells, as in guinea-pig and rat ileum, and could therefore be used as a marker for intrinsic primary afferent neurons. The neurochemical coding of CALB-containing myenteric and submucosal neurons in ileum of unweaned lamb and mature sheep and its co-localisation with various neural markers was studied immunohistochemically. An antiserum against neuronal nuclear protein (NeuN) failed to detect the entire neuronal population; it was expressed only in 48% of neuron-specific enolase (NSE)-immunoreactive (NSE-IR) neurons. Human neuronal protein appeared to occur in the large majority or all neurons. Almost all CALB-IR neurons were: (1) radially multidendritic; (2) eccentric multidendritic; (3) Dogiel type II. CALB-IR occurred in 20–25% of myenteric and 65–75% of submucosal neurons in lamb and mature sheep, with higher values in mature sheep. Nearly all CALB-IR neurons were common choline acetyltransferase (cChAT)-IR, whereas only about 20% of cChAT-IR somata were CALB-IR. In lamb and mature sheep, 90% of MP CALB-IR neurons were peripheral choline acetyltransferase (pChAT)-IR. In lamb SMP, 80±13% of CALB-IR cells were also pChAT-IR, whereas all those in mature SMP were pChAT-IR. Fewer myenteric CALB-IR neurons exhibited tachykinin (TK) in mature sheep (49%) than in lamb (88%). This was also the case for submucosal ganglia (mature sheep, 63%; lamb, 89%). In lamb MP, 77±7% of CALB-IR cells were NeuN-positive. In mature sheep, 73±10% of CALB-IR somata were NeuN-IR, but NeuN failed to stain SMP neurons. In the MP of suckling and mature sheep, Dogiel type II CALB-IR neurons were calcitonin gene-related peptide (CGRP)-IR. In the SMP at both stages, Dogiel type II CALB-IR somata (about 50% of CALB-IR neurons) were also CGRP-IR. Only small proportions of CALB-IR neurons showed immunoreactivity for calretinin or nitric oxide synthase (NOS), although large populations of CALB and NOS neurons occurred in the ganglia. Thus, CALB is a marker of most Dogiel type II neurons in the sheep but is not confined to Dogiel II neurons. CGRP is a more selective marker of Dogiel type II neurons, being only found in this neuron type.This work was supported by a grant from the Ministero dellIstruzione, dellUniversità e della Ricerca (MIUR)  相似文献   

2.
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.  相似文献   

3.
Choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine, has been implicated to involve multiple isoforms of ChAT mRNA in several animals. Since these isoforms are mostly non-coding splice variants, only a homologous ChAT protein of about 68 kDa has been shown to be produced in vivo. Recent evidence indicates the existence of a protein coding splice variant of ChAT mRNA, which lacks exons 6-9 of the rat ChAT gene. The encoded protein was designated ChAT of a peripheral type (pChAT), because of its preferential expression in the peripheral nervous system as confirmed by Western blot and immunohistochemistry. However, functional significance of pChAT is unknown. To obtain a clue to this question, we examined a possible difference in intracellular trafficking between pChAT and the well-known ChAT of the common type (cChAT) using green fluorescent protein (GFP) in living human embryonic kidney cells. Confocal laser scanning microscopy revealed that pChAT-GFP was detectable in the cytoplasm but not in the nucleus, whereas cChAT-GFP was found in both cytoplasm and nucleus. Following treatment with leptomycin B, a nuclear export pathway inhibitor, pChAT-GFP became detectable in both cytoplasm and nucleus, indicating that pChAT can be translocated to the nucleus. In contrast, the leptomycin B treatment did not seem to affect the content of intranuclear cChAT-GFP. After incubation with protein kinase C inhibitors, enhanced accumulation of pChAT-GFP but not cChAT-GFP occurred in the nucleus. These results clearly indicate that pChAT varies from cChAT in intracellular transportation, probably reflecting the difference in physiological roles between pChAT and cChAT.  相似文献   

4.
Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum   总被引:4,自引:0,他引:4  
Previous studies have identified Dogiel type II neurons with cell bodies in the myenteric plexus of guinea-pig ileum to be intrinsic primary afferent neurons. These neurons also have distinctive electrophysiological characteristics (they are AH neurons) and 82-84% are immunoreactive for calbindin. They are the only calbindin-immunoreactive neurons in the plexus. Neurons with analogous shape and electrophysiology are found in submucosal ganglia, but, with antibodies used in previous studies, they lack calbindin immunoreactivity. An antiserum that is more effective in revealing calbindin in the guinea-pig enteric nervous system has been reported recently. In the present work, we found that this antiserum reveals the same population that was previously identified in myenteric ganglia, and does not reveal any further population of myenteric nerve cells. In submucosal ganglia, 9-10% of nerve cells were calbindin immunoreactive with this antiserum. The submucosal neurons with calbindin immunoreactivity were also immunoreactive for choline acetyltransferase, but not for neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP). Small calbindin-immunoreactive neurons (average profile 130 microm2) were calretinin immunoreactive, whereas the large calbindin-immunoreactive neurons (average profile 330 microm2) had tachykinin (substance P) immunoreactivity. Calbindin immunoreactivity was seen in about 50% of the calretinin neurons and 40% of the tachykinin-immunoreactive submucosal neurons. It is concluded that, in the guinea-pig ileum, only one class of myenteric neuron, the AH/Dogiel type II neuron, is calbindin immunoreactive, but, in the submucosal ganglia, calbindin immunoreactivity occurs in cholinergic, calretinin-immunoreactive, secretomotor/vasodilator neurons and AH/Dogiel type II neurons.  相似文献   

5.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

6.
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.  相似文献   

7.
To produce antibodies that permit the immunohistochemical discrimination of choline acetyltransferase of the common type (cChAT) from its splice variant of a peripheral type (pChAT), we immunized rabbits with a cChAT specific recombinant protein encoded by ChAT exons 7 and 8 of the rat cChAT gene. Successful antibody production was proved by Western blotting on rat brain and on HEK293 cells expressing green fluorescent protein (GFP), cChAT-GFP and pChAT-GFP. By immunohistochemistry our antiserum clearly labeled known cholinergic structures in rat brain, but gave no positive staining in the trigeminal ganglion which contained many neurons positive with pChAT antiserum.  相似文献   

8.
The sympathetic and enteric divisions of the autonomic nervous system are interactive in the determination of the functional state of the digestive tract. Activation of the sympathetic input suppresses digestive function primarily through release of norepinephrine at its synaptic interface with the enteric nervous system. The enteric nervous system functions like an independent minibrain in the initiation of the various programmed patterns of digestive tract behavior and moment-to-moment control as the neural microcircuits carry-out the behavioral patterns. Most of the postganglionic projections from sympathetic prevertebral ganglia terminate as synapses in myenteric and submucous ganglia of the enteric nervous system. Two primary actions of the sympathetic input are responsible for suppression of motility and secretion. First is presynaptic inhibitory action of norepinephrine to suppress release of neurotransmitters at fast and slow excitatory synapses in the enteric neural microcircuits and this effectively shuts-down the circuit. Second is inhibitory synaptic input to submucosal secretomotor neurons to the intestinal crypts. The alpha, adrenergic receptor subtype mediates both actions. Axons of secretomotor neurons to the crypts bifurcate to innervate and dilate the submucosal vasculature. Dilitation of the vasculature increases blood flow in support of increased secretion. Sympathetic inhibitory input to the secretomotor neurons therefore suppresses both secretion and blood flow. Activation of the sympathetic nervous system cannot explain the symptoms of secretory diarrhea and abdominal discomfort associated with psychologic and other forms of stress. Current evidence suggests that brain to mast cell connections account for stress-induced gastrointestinal symptoms. Degranulation of enteric mast cells by neural inputs releases inflammatory mediators that enhance excitability of intestinal secretomotor neurons while suppressing the release of norepinephrine from postganglionic sympathetic axons. This is postulated to underlie the secretory diarrhea and abdominal discomfort associated with stress.  相似文献   

9.
Expression of the cholinergic gene locus in the rat placenta   总被引:5,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

10.
Simultaneous immunofluorescence labelling was used to investigate the patterns of colocalisation of the NK1 tachykinin receptor with other neuronal markers, and hence determine the functional classes of neuron that bear the NK1 receptor in the guinea-pig ileum. In the myenteric plexus, 85% of NK1 receptor-immunoreactive (NK1r-IR) nerve cells had nitric oxide synthase (NOS) immunoreactivity and the remaining 15% were immunoreactive for choline acetyltransferase (ChAT). Of the latter group, about 50% were immunoreactive for both neuropeptide Y (NPY) and somatostatin (SOM), and had the morphologies of secretomotor neurons. Many of the remaining ChAT neurons were immunoreactive for calbindin or tachykinins (TK), but not both. These calbindin immunoreactive neurons had Dogiel type II morphology. No NK1r-IR nerve cells in the myenteric plexus had serotonin or calretinin immunoreactivity. In the submucosal ganglia, 84% of NK1r-IR nerve cells had neuropeptide Y immunoreactivity and 16% were immunoreactive for TK. It is concluded that NK1r-IR occurs in five classes of neuron; namely, in the majority of NOS-immunoreactive inhibitory motor neurons, in ChAT/TK-immunoreactive excitatory neurons to the circular muscle, in all ChAT/NPY/SOM-immunoreactive secretomotor neurons, in a small proportion of ChAT/calbindin myenteric neurons, and in about 50% of ChAT/TK submucosal neurons.  相似文献   

11.
Cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) are particularly vulnerable to laryngeal nerve damage, possibly because they lack fibroblast growth factor-1 (FGF1). To test this hypothesis, we investigated the localization of FGF1 in cholinergic neurons innervating the rat larynx by immunohistochemistry using central-type antibodies to choline acetyltransferase (cChAT) and peripheral type (pChAT) antibodies, as well as tracer experiments. In the DMNV, only 9% of cChAT-positive neurons contained FGF1, and 71% of FGF1-positive neurons colocalized with cChAT. In the nucleus ambiguus, 100% of cChAT-positive neurons were FGF1 positive. In the intralaryngeal ganglia, all ganglionic neurons contained both pChAT and FGF1. In the nodose ganglia, 66% of pChAT-positive neurons were also positive for FGF1, and 90% of FGF1-positive ganglionic cells displayed pChAT immunoreactivity. Neuronal tracing using cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV and nucleus ambiguus to the superior laryngeal nerve were FGF1 negative and FGF1 positive, respectively. In the nodose ganglia, some FGF1-positive cells were labeled with CTb. The results indicate that for innervation of the rat larynx, FGF1 is localized to motor neurons, postganglionic parasympathetic neurons, and sensory neurons, but expression is very low in preganglionic parasympathetic cholinergic neurons.  相似文献   

12.
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.  相似文献   

13.
Immunohistochemical techniques were used to study the distribution of cholinergic neurons containing choline acetyltransferase of the common type (cChAT), the synthetic enzyme of acetylcholine, in the central nervous system of the slug Limax maximus and Limax valentianus. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, three methods were used in order to validate antibody specificity for the Limax counterpart enzyme. Western blot combined with ChAT activity assay following native gel electrophoresis and immunoprecipitation analysis both indicated that immunoreactive Limax brain molecules were capable of synthesizing acetylcholine. Western blot after denatured gel electrophoresis of Limax brain extracts revealed a single band of about 67kDa. All findings obtained with these three methods clearly indicated that the antiserum effectively recognized Limax cChAT. 1400 neuronal cell bodies positive for cChAT, mainly small to medium-sized, were found in various brain regions in the buccal, cerebral, pleural, parietal, visceral and pedal ganglia. cChAT immunoreactive nerve fibers were distributed extensively in the neuropil, connectives and commissures of these central ganglia. The map of cChAT-positive cells provided here are valuable for understanding the cholinergic mechanism in the slug brain, as well as giving an important hint to clarifying the mechanisms of learning and memory in higher vertebrates including humans.  相似文献   

14.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

15.
The P2X(2) subtype of purine receptor was localised by immunohistochemistry to nerve cells of the myenteric ganglia of the stomach, small and large intestines of the guinea-pig, and nerve cells of submucosal ganglia in the intestine. Nerve cells with strong and with weak immunoreactivity could be distinguished. Immunoreactivity in both strongly and weakly immunoreactive neurons was absorbed with P2X(2) receptor peptide. In the myenteric plexus, strong immunoreactivity was in nitric oxide synthase (NOS)- and in calbindin-immunoreactive neurons. In all regions, over 90% of NOS-immunoreactive neurons were strongly P2X(2) receptor immunoreactive. The intensity of reaction varied in calbindin neurons; in the ileum, 90% were immunoreactive for the receptor, about one-third having a strong reaction. In the submucosal ganglia, all vasoactive intestinal peptide-immunoreactive neurons were P2X(2) receptor immunoreactive, but there was no receptor immunoreactivity of calretinin or neuropeptide Y neurons. Varicose nerve fibres with P2X(2) receptor immunoreactivity were found in the gastric myenteric ganglia. These fibres disappeared after vagus nerve section. It is concluded that the P2X(2) receptor is expressed by specific subtypes of enteric neurons, including inhibitory motor neurons, non-cholinergic secretomotor neurons and intrinsic primary afferent neurons, and that the receptor also occurs on the endings of vagal afferent fibres in the stomach.  相似文献   

16.
pChAT is a splice variant of a peripheral type encoded alternatively by the gene for choline acetyltransferase of the common type (cChAT), the enzyme responsible for acetylcholine synthesis. Immunohistochemistry using pChAT antiserum has successfully visualized many known peripheral cholinergic cells, whereas most cChAT antibodies failed to do so. As, however, accumulating evidence indicates that pChAT expression also occurs in various non-cholinergic neurons, we examined possible acetylcholine production by pChAT in rat dorsal root ganglion as a model. The present study indicated that the ganglion neurons possessed pChAT, but never cChAT, mRNA and protein. Our detailed analysis further showed that, despite low enzyme activities of both choline acetyltransferase and acetylcholinesterase, the level of acetylcholine in the ganglion was as high as to that in various brain regions receiving cholinergic innervation. By using immunoprecipitation methods, we here provide evidence that pChAT definitely has enzyme activity enough to supply physiological concentrations of acetylcholine in the ganglion. We propose that pChAT contributes both to acetylcholine neurotransmission in physiologically identified cholinergic cells and to functions yet unknown in non-cholinergic neurons. Thus pChAT provides a new window on the role of neuronal acetylcholine.  相似文献   

17.
The cholinergic muscarinic 2 receptor (M2r) is known to be present on smooth muscle cells in the intestine. Pharmacological studies also suggest that M2rs regulate transmitter release from nerves in the enteric nervous system. This study localised M2rs in the guinea-pig ileum using different antibodies and fluorescence immunohistochemistry. Double labelling with antibodies against neurochemical markers was used to identify the type of nerves bearing M2r. Guinea-pig ileum were fixed, prepared for sections and wholemounts and incubated with antisera against the M2r sequence. Tissue was double labelled with antibodies against neuronal nitric oxide synthase (nNOS), common choline acetyltransferase (cChAT), substance P (SP), synaptophysin and vesicular acetylcholine transporter (VAChT). Immunofluorescence was viewed using confocal microscopy. Abundant M2r-immunoreactivity (IR) was present on the surface of circular and longitudinal smooth muscle cells. M2r-IR was present in many but not all nerve fibres in the circular muscle and ganglia. M2r-IR was present in VAChT-IR and cChAT-IR cholinergic nerve fibres and SP-IR nerve fibres in the myenteric ganglia and submucosal ganglia. M2r-IR was present on a few nNOS-IR nerve fibres and around nNOS-IR neurons in the myenteric ganglia. In the circular muscle and deep muscular plexus, M2r-IR was present in many VAChT-IR and SP-IR nerve fibres and in few nNOS-IR nerves. M2rs are not only present on muscle cells in the intestine, but also on nerve fibres. M2rs may mediate cholinergic reflexes via their location on muscle and also via neural transmission. The pre-synaptic location supports pharmacological studies suggesting M2rs mediate neurotransmitter release from nerve fibres. The presence of M2rs on VAChT-IR, SP-IR and nNOS-IR-containing nerve fibres suggests M2rs may regulate ACh, SP and nitric oxide release. Work in this study was funded by the National Health and Medical Research Council (grant numbers: 114215 and 216704; Senior Research Fellowship to B.S.), a Melbourne University Research Scholarship and the Murdoch Children’s Research Institute.  相似文献   

18.
Opioid drugs have profound antidiarrheal and constipating actions in the intestinal tract and are effective in mitigating abdominal pain. Mediators of intestinal inflammation and allergy produce increased mucosal secretion, altered bowel motility and pain due to their ability to evoke enteric secretomotor reflexes through primary afferent neurons. In this study, the distribution of delta- and kappa-opioid receptor (DOR and KOR, respectively) immunoreactivities in chemically identified neurons of the porcine ileum was compared with that of the capsaicin-sensitive type 1 vanilloid receptor (VR1). DOR and VR1 immunoreactivities were observed to be highly localized in choline acetyltransferase (ChAT)- and calcitonin gene-related peptide (CGRP)-positive neurons and nerve fibers of the submucosal and myenteric plexuses and both receptors exhibited frequent colocalization. In the inner submucosal plexus, they also were colocalized in substance P (SP)-positive neurons. Neurons in the outer submucosal plexus expressed DOR immunoreactivity alone or in combination with VR1. KOR-immunoreactive neurons were found only in the myenteric plexus; these cells coexpressed immunoreactivity to ChAT, CGRP, vasoactive intestinal peptide (VIP) or nitric oxide synthase (NOS). In addition, some KOR-positive neurons coexpressed immunoreactivities to DOR and VR1. Based on their neurochemical coding, opioid and vanilloid receptor-immunoreactive neurons in the submucosal and myenteric plexuses may include primary afferents and constitute novel therapeutic targets for the palliation of painful intestinal inflammatory, hypersensitivity and dysmotility states.  相似文献   

19.
The colocalisation of choline acetyltransferase (ChAT) with markers of putative intrinsic primary afferent neurons was determined in whole-mount preparations of the myenteric and submucosal plexuses of the rat ileum. In the myenteric plexus, prepared for the simultaneous localisation of ChAT and nitric oxide synthase (NOS), all nerve cells were immunoreactive (IR) for ChAT or NOS, but seldom for both; only 1.6 +/- 1.8% of ChAT-IR neurons displayed NOS-IR and, conversely, 2.8 +/- 3.3% of NOS-IR neurons were ChAT-IR. In preparations double labelled for NOS-IR and the general nerve cell marker, neuron-specific enolase, 24% of all nerve cells were immunoreactive for NOS, indicating that about 75% of all nerve cells have ChAT-IR. All putative intrinsic primary afferent neurons in the myenteric plexus, identified by immunoreactivity for the neurokinin 1 (NK1) receptor and the neurokinin 3 (NK3) receptor, were ChAT-IR. Conversely, of the ChAT-IR nerve cells, about 45% were putative intrinsic primary afferent neurons (this represents 34% of all nerve cells). The cell bodies of putative intrinsic primary afferent neurons had Dogiel type II morphology and were also immunoreactive for calbindin. All, or nearly all, nerve cells in the submucosal plexus were immunoreactive for ChAT. About 46% of all submucosal nerve cells were immunoreactive for both neuropeptide Y (NPY) and calbindin; 91.8 +/- 10.5% of NPY/calbindin cells were also ChAT-IR and 99.1 +/- 0.7% were NK3 receptor-IR. Of the nerve cells with immunoreactivity for ChAT, 44.3 +/- 3.8% were NPY-IR, indicating that about 55% of submucosal nerve cells had ChAT but not NPY-IR. Only small proportions of the ChAT-IR, non-NPY, nerve cells had NK3 receptor or calbindin-IR. It is concluded that about 45% of submucosal nerve cells are ChAT/calbindin/NPY/VIP/NK3 receptor-IR and are likely to be secretomotor neurons. Most of the remaining submucosal nerve cells are immunoreactive for ChAT, but their functions were not deduced. They may include the cell bodies of intrinsic primary afferent neurons.  相似文献   

20.
Previous studies have identified the chemistries, shapes, projections and electrophysiological characteristics of several populations of neurons in the distal colon of the guinea-pig but it is unknown how these characteristics correlate to define the classes of neurons present. We have used double-label immunohistochemical techniques to identify neurochemically distinct subgroups of enteric neurons in this region. On the basis of colocalisation of neurochemical markers and knowledge gained from previous studies of neural projections, 17 classes of neurons were identified. The myenteric plexus contained the cell bodies of 13 distinct types of neurons. Four classes of descending interneurons and three classes of ascending interneurons were identified, together with inhibitory and excitatory motor neurons to both the circular and longitudinal muscle layers. Dogiel type II neurons, which are presumed to be intrinsic primary afferent neurons, were located in myenteric and submucosal ganglia; they were all immunoreactive for choline acetyltransferase and often calbindin and tachykinins. Three classes of secretomotor neurons with cell bodies in submucosal ganglia were defined. Two of these classes were immunoreactive for choline acetyltransferase and the other class was immunoreactive for both vasoactive intestinal peptide and nitric oxide synthase. Some of the secretomotor neurons probably also have a vasomotor function. The neural subtypes defined in the present study are similar in many respects to those found in the small intestine, although differences are evident, especially in populations of interneurons. These differences presumably reflect the differing physiological roles of the two intestinal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号