首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Several lines of evidence indicate that nerve growth factor is important for the development and maintenance of the basal forebrain cholinergic phenotype. In the present study, using rat primary embryonic basal forebrain cultures, we demonstrate the differential regulation of functional cholinergic markers by nerve growth factor treatment (24–96 h). Following a 96‐h treatment, nerve growth factor (1–100 ng/mL) increased choline acetyltransferase activity (168–339% of control), acetylcholine content (141–185%), as well as constitutive (148–283%) and K+‐stimulated (162–399%) acetylcholine release, but increased release was not accompanied by increased high‐affinity choline uptake. Enhancement of ACh release was attenuated by vesamicol (1 µm ), suggesting a vesicular source, and was abolished under choline‐free conditions, emphasizing the importance of extracellular choline as the primary source for acetylcholine synthesized for release. A greater proportion of acetylcholine released from nerve growth factor‐treated cultures than from nerve growth factor‐naïve cultures was blocked by voltage‐gated Ca2+ channel antagonists, suggesting that nerve growth factor modified this parameter of neurotransmitter release. Cotreatment of NGF (20 ng/mL) with K252a (200 nm ) abolished increases in ChAT activity and prevented enhancement of K+‐stimulated ACh release beyond the level associated with K252a, suggesting the involvement of TrkA receptor signaling. Also, neurotrophin‐3, neurotrophin‐4 and brain‐derived neurotrophic factor (all at 5–200 ng/mL) increased acetylcholine release, although they were not as potent as nerve growth factor and higher concentrations were required. High brain‐derived neurotrophic factor concentrations (100 and 200 ng/mL) did, however, increase release to a level similar to nerve growth factor. In summary, long‐term exposure (days) of basal forebrain cholinergic neurons to nerve growth factor, and in a less‐potent fashion the other neurotrophins, enhanced the release of acetylcholine, which was dependent upon a vesicular pool and the availability of extracellular choline.  相似文献   

2.
Berth's method was used to study the cytochemical activity of choline acetyltransferase in truncus cerebri neurons of 6-8 lunar month-old human fetuses. Three types on neurons were diagnosed in the nuclei of the truncus cerebri with regard to cholinacetyltransferase localization: (1) cholinergic cholinoceptive neurons; (2) cholinergic non-cholinoceptive neurons; (3) non-cholinergic cholinoceptive neurons. The distribution of the neurons in 27 nuclei of the truncus cerebri is described.  相似文献   

3.
Cells derived from the neonatal rat pineal gland were cocultured with cells derived from neonatal rat superior cervical ganglia (SCG) in an attempt to determine whether a sympathetic target organ with only adrenergic properties could enhance the development of adrenergic transmitter properties in sympathetic neurons in tissue culture. Choline acetyltransferase was measured as an index of cholinergic differentiation, and tyrosine hydroxylase was measured as an index of adrenergic differentiation. As indices of total cell number and cellular volume, DNA and protein, respectively, were also measured. We found that the pineal-SCG cocultures contained ten times greater choline acetyltransferase activity than sister neuronal cultures cultured without pineal cells, thus indicating that the pineal cells enhanced cholinergic properties in the sympathetic neurons. This cholinergic enhancement was dependent upon the presence of nerve growth factor and could not be obtained with pineal-conditioned medium. Tyrosine hydroxylase activity, measured on cultures sister to those mentioned above, was low in all cultures and decreased somewhat in SCGs cultured alone. TH activity in the pineal-SCG cocultures, however, increased slightly. Some tyrosine hydroxylating activity developed in pineals cultured alone, however, and may have been responsible for the small increase in tyrosine hydroxylase activity noted in the pineal-SCG cocultures. The implications of these results for a determination of the role that target organ plays in the development of the transmitter properties of sympathetic neurons are discussed.  相似文献   

4.
Using several actin isotype-specific cDNA probes, we found actin mRNA of two size classes, 2.1 and 1.5 kilobases (kb), in extracts of polyadenylated and nonpolyadenylated RNA from sexually mature CD-1 mouse testes. Although the 2.1-kb sequence was present in both meiotic and postmeiotic testicular cell types, it decreased manyfold in late haploid cells. The 1.5-kb actin sequence was not detectable in meiotic pachytene spermatocytes (or in liver or kidney cells), but was present in round and elongating spermatids and residual bodies. To differentiate between the beta- and gamma-actin mRNAs, we isolated a cDNA, pMGA, containing the 3' untranslated region of a mouse cytoplasmic actin that has homology to the 3' untranslated region of a human gamma-actin cDNA but not to the 3' untranslated regions of human alpha-, beta-, or cardiac actins. Dot blot hybridizations with pMGA detected high levels of presumptive gamma-actin mRNA in pachytene spermatocytes and round spermatids, with lower amounts found in elongating spermatids. Hybridization with the 3' untranslated region of a rat beta-actin probe revealed that round spermatids contained higher levels of beta-actin mRNA than did pachytene spermatocytes or residual bodies. Both probes hybridized to the 2.1-kb actin mRNA but failed to hybridize to the 1.5-kb mRNA.  相似文献   

5.

Background  

Asthma pathogenesis and susceptibility involves a complex interplay between genetic and environmental factors. Their interaction modulates the airway inflammation and remodelling processes that are present even in mild asthma and governs the appearance and severity of symptoms of airway hyperresponsiveness. While asthma is felt to develop as the result of interaction among many different genes and signalling pathways, only a few genes have been linked to an increased risk of developing this condition.  相似文献   

6.
Recently, we have reported on the presence of two forms of heme oxygenase in rat liver and testis microsomes, referred to as HO-1 and HO-2 (M. D. Maines, G. M. Trakshel, and R. K. Kutty (1986) J. Biol. Chem. 261, 411-419; G. M. Trakshel, R. K. Kutty, and M. D. Maines (1986) J. Biol. Chem. 261, 11131-11137). Although the two forms differed in several biochemical properties, we could not ascertain whether they represented two isozymes or whether they were isoforms of heme oxygenase. In the present study, we provide evidence suggesting that the two forms are isozymes and represent different gene products. We also provide data suggesting that HO-1 is the commonly known heme oxygenase form. The molecular weight and immunochemical properties of HO-1 and HO-2 did not vary depending on the tissue source examined, i.e. liver and testis. Major differences, however, were noted in the amino acid composition of the two forms including the presence of 3 cysteine/cystine residues in HO-2 only. Using antibody to HO-2, four testis clones and two liver clones were isolated, and one liver and one testis clone were sequenced. Both clones revealed a 274-base-pair insert, and the sequence of both inserts was the same. The validity of assignment was confirmed by matching a 14-amino-acid peptide obtained from purified HO-2 with the sequence. Approximately 43% amino acid homology was detected between the HO-2 insert and the published amino acid sequence of heme oxygenase. However, amino acid homology search revealed the presence of two regions of homology: one 22-mer sequence with only one unmatched amino acid, and one 10-mer sequence with one unmatched amino acid. Heme oxygenase appeared to be the HO-1 form, an assignment based on its amino acid sequence matching the sequence of 2 peptides obtained from purified HO-1 and the immunochemical properties of the cobalt-, hematin-, and bromobenzene-induced rat liver enzyme. The secondary structure prediction analysis revealed an area of 100% structural homology with only 72% sequence homology. We predict this region may represent the catalytic site of the enzyme.  相似文献   

7.
The first neurons that differentiate in the embryonic foregut of mammals transiently express catecholamine biosynthetic enzymes and accumulate catecholamine. Since this transmitter is found predominantly in cells of the sympatho-adrenal (SA) lineage, it has been suggested that enteric and sympathetic neurons may derive from the same progenitor. Enteric neurons would then lose the catecholamine phenotype during further development, as the two lineages diverge. We have further investigated this possibility using the SA1 monoclonal antibody that binds selectively to SA progenitor cells in the embryonic rat. We find that SA1 binds to the tyrosine hydroxylase+, neurofilament+, and SCG10+ cells of the Embryonic Day 14.5 (E14.5) rat foregut. We also find that a marker for later neuronal differentiation in the SA lineage, B2, also appears in the myenteric plexus concomitant with the loss of SA1 staining. Thus, at least some enteric neuronal precursors may exhibit the SA1----B2 antigenic switch previously observed in developing sympathetic neurons at E14.5. SA1 staining in the foregut partially overlaps with staining for neuropeptide Y, vasoactive intestinal polypeptide, and serotonin. These results support the hypothesis that enteric and sympathetic neurons derive from a common progenitor and that as the markers for the SA lineage are down-regulated, the many types of enteric neurons begin to differentiate.  相似文献   

8.
Lamins are type V intermediate filament proteins that support nuclear membranes. They are divided into A-type lamins, which include lamin A and C, and B-type lamins, which include lamin B1 and B2. In the rat brain, lamin A and C are expressed in relatively equal amounts, while the expressions of lamin B1 and B2 vary depending on the cell type. Lamins play important roles in normal morphogenesis and function. In the nervous system, their abnormal expression causes several neurodegenerative diseases such as peripheral neuropathy, leukodystrophy and lissencephaly. The retina belongs to the central nervous system (CNS) and has widely been used as a source of CNS neurons. We investigated the expression patterns of lamin subtypes in the adult rat retina by immunohistochemistry and found that the staining patterns differed when compared with the brain. All retinal neurons expressed lamin B1 and B2 in relatively equal amounts. In addition, horizontal cells and a subpopulation of retinal ganglion cells expressed lamin A and C, while photoreceptor cells expressed neither lamin A nor C, and all other retinal neurons expressed lamin C only. This differential expression pattern of lamins in retinal neurons suggests that they may be involved in cellular differentiation and expression of cell-specific genes in individual retinal neurons.  相似文献   

9.
1. The behaviour of choline acetyltransferase from pigeon, guinea-pig, rat and cat brain on isoelectric focusing was studied. 2. Choline acetyltransferase from pigeon and guinea-pig brain showed single peaks with isoelectric points at pH6.6 and 6.8 respectively. Only one molecular form of the enzyme was therefore detected in these species. 3. Three peaks of choline acetyltransferase activities with isoelectric points 7.3-7.6, 7.7-7.9 and 8.3 were obtained with enzyme preparations from rat brain. 4. The separate identities of each of the three forms were confirmed by refocusing. 5. Choline acetyltransferase activity from a high-speed supernatant of rat brain homogenate was distributed similarly to a partially purified enzyme preparation from rat brain in the isoelectric gradient. 6. The enzyme activities from cat brain were separated into two distinct peaks with isoelectric points 7.0 and 8.4, and a possible third peak with isoelectric point 7.6. 7. The two main peaks showed considerable differences in stability on storage, and their identities were confirmed by refocusing. 8. The distribution of the enzyme activities was unaltered by isoelectric focusing in the presence of 3m-urea. 9. The apparent K(m) for choline of choline acetyltransferase from rat, cat and guinea-pig brain was 0.8mm, whereas for the pigeon enzyme it was 0.4mm.  相似文献   

10.
Two forms of progranulin mRNA were isolated from kidney and spleen cDNA libraries of the olive flounder, Paralichthys olivaceus. The 3'-untranslated regions (3'-UTRs) of these flounder progranulin (f-pgrn) mRNAs differed in a 20-nucleotide sequence element (5'-AACTGATTACGTTCAACAAC-3') that was present in one mRNA (designated f-pgrn type II) and not in the other (designated f-pgrn type I). Both mRNA sequences contained an open reading frame encoding a 289-amino-acid polypeptide of approximately 33 kDa. Southern blot analysis of the P. olivaceus flounder genome using an f-pgrn cDNA probe and a PCR-based approach identified a single copy of f-pgrn corresponding to the type II mRNA. The expression profiles of the two types of f-pgrn mRNA differed from each other and were tissue- and condition-dependent. The type II mRNA was detected abundantly in studied tissues (gill, kidney, spleen, and intestine) of non-stimulated healthy flounders. The type I mRNA was rarely expressed in any tissues of healthy flounders, but it was continuously increased in the examined tissues of flounders after the intraperitoneal injection of lipopolysaccharide. On the other hand, the expression of type II mRNA was decreased in inverse proportion to the type I mRNA in the LSP-stimulated flounders. These results suggest that type I and type II f-pgrn mRNA are translated into different proteins with different activities in the immune system of flounder.  相似文献   

11.
Waddell S  Armstrong JD  Kitamoto T  Kaiser K  Quinn WG 《Cell》2000,103(5):805-813
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.  相似文献   

12.
Although alternative splicing of many genes has been found associated with different stages of tumorigenesis and splicing variants have been characterized as tumor markers, it is still not known whether these examples are sporadic or whether there is a broader association between the two phenomena. In this report we evaluated, through a bioinformatics approach, the expression of splicing factors in both normal and tumor tissues. This was possible by integrating data produced by proteomics, serial analysis of gene expression (SAGE) and microarray experiments. We observed a significant shift in the expression of splicing factors in tumors in both SAGE and microarray data, resulting from a large amount of experiments. We discuss that this supports the notion of a broader association between alternative splicing and cell transformation, and that splicing factors may be involved in oncogenic pathways.  相似文献   

13.
Transmission of Trypanosoma brucei by the tsetse fly entails several rounds of differentiation as the parasite migrates through the digestive tract to the salivary glands of its vector. Differentiation of the bloodstream to the procyclic form in the fly midgut is accompanied by the synthesis of a new coat consisting of EP and GPEET procyclins. There are three closely related EP isoforms, two of which (EP1 and EP3) contain N-glycans. To identify the individual EP isoforms that are expressed early during synchronous differentiation in vitro, we exploited the selective extraction of GPI-anchored proteins and mass spectrometry. Unexpectedly, we found that GPEET and all isoforms of EP were coexpressed for a few hours at the onset of differentiation. At this time, the majority of EP1 and EP3 molecules were already glycosylated. Within 24 hours, GPEET became the major surface component, to be replaced in turn by glycosylated forms of EP, principally EP1, at a later phase of development. Transient transfection experiments using reporter genes revealed that each procyclin 3' untranslated region contributes to differential expression as the procyclic form develops. We postulate that programmed expression of other procyclin species will accompany further rounds of differentiation, enabling the parasite to progress through the fly.  相似文献   

14.
15.
Streptomyces coelicolor and Lemna minor were used as a model to study the modulation of bacterial gene expression during plant-streptomycete interactions. S. coelicolor was grown in minimal medium with and without L. minor fronds. Bacterial proteomes were analyzed by two-dimensional gel electrophoresis, and a comparison of the two culture conditions resulted in identification of 31 proteins that were induced or repressed by the presence of plant material. One-half of these proteins were identified by peptide mass fingerprinting by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. The induced proteins were involved in energetic metabolism (glycolysis, pentose phosphate pathway, oxidative phosphorylation), protein synthesis, degradation of amino acids, alkenes, or cellulose, tellurite resistance, and growth under general physiological or oxidative stress conditions. The repressed proteins were proteins synthesized under starvation stress conditions. These results suggest that root exudates provide additional carbon sources to the bacteria and that physiological adaptations are required for efficient bacterial growth in the presence of plants.  相似文献   

16.
The submucous layers of human small and large intestines contain at least two separate neuron populations. Besides morphological features, they differ in their immunoreactivities for calretinin (CALR) and somatostatin (SOM), respectively. In this study, submucosal wholemounts of 23 patients or body donors (including all segments of small intestine and colon) were immunohistochemically quadruple stained for CALR and SOM as well as for substance P (SP) and choline acetyltransferase (ChAT). We found that all SOM-positive neurons co-stained for ChAT and the majority for SP [between 50 % in the small intestinal external submucosal plexus (ESP) and 75 % in the colonic ESP]. In contrast, a majority of CALR-neurons contained ChAT (between 77 % in the small intestinal ESP and 92 % in the large intestinal ESP) whereas less than 4 % of CALR-neurons were co-immunoreactive for SP. Another set of wholemounts was co-stained for peripherin, a marker enabling morphological analysis. Where identifiable, both SOM alone- and SOM/SP-neurons displayed a uniaxonal (supposed pseudouniaxonal) morphology. We suggest that the chemical code of SOM-immunoreactive, human submucosal neurons may be “ChAT+/SOM+/SP±”. In additional sections double stained for SOM and SP, we regularly found double-labelled nerve fibres only in the mucosa. In contrast, around submucosal arteries mostly SOM alone- fibres were found and the muscularis propria contained numerous SP-alone fibres. We conclude that the main target of submucosal SOM(/SP)-neurons may be the mucosa. Due to their morpho-chemical similarity to human myenteric type II neurons, we further suggest that one function of human submucosal SOM-neurons may be a primary afferent one.  相似文献   

17.
The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.  相似文献   

18.
Park B  Jeong SK  Lee WS  Seong JK  Paik YK 《Proteomics》2004,4(11):3369-3375
Proteomic analysis of brain tissues obtained from two inbred mice, C57BL/6J (B6, an alcohol-preferring strain) and DBA/2J (D2, an alcohol-avoiding strain), that were orally administered 1.5 g/kg ethanol, was performed to investigate alcohol-responsive proteins. To analyze relationships of alcohol-responsive protein spots between B6 and D2 mice, we have developed a simple spot classification method (SCM) for the fully matched spot data sets produced by the Melanie 4 analysis software using the paired two-dimensional (2-D) gels of two strains over time. By applying SCM, 55 protein spots that were differentially expressed in brain tissue were classified into 16 patterns as mirror images (2x8 patterns), and additionally in an ordered fashion such as 'fast turn over' and 'slow turn over' forms, depending on the frequency of repetition and rate of changed expression profile in 2-D gels over time. Searching for any interaction proteins through databases of interacting proteins using the classified data set has led to the construction of a linkage map, which reveals the interrelationship of the alcohol-responsive proteins between different species. Thus, it is suggested that the different responses for alcohol between B6 and D2 may come from differences of the response rates and interactions of different variants of the alcohol-responsive protein family.  相似文献   

19.
Detection of choline acetyltransferase (ChAc) in a number of non-neuronal tissues has been extremely overestimated. There are two major types of errors encountered. Type 1 error occurs when endogenous substrates (e.g. L-carnitine) are acetylated by acetyltransferase enzymes (e.g. carnitine acetyltransferase ( CarAc ) ) yielding an acetylated product mistaken for acetylcholine (AcCh). In the past, human sperm and human seminal plasma putative ChAc activity has been extremely overestimated due to Type 1 error. This study demonstrates (1) an endogenous acetyltransferase and substrate activity in human sperm and human seminal plasma forming an acetylated product that is not AcCh but probably acetylcarnitine ( AcCar ); (2) that the addition of 5 mM choline substrate does not significantly increase acetyltransferase activity; (3) that boiled seminal plasma contains an endogenous acetyltransferase substrate which is not choline, but probably L-carnitine. Type 2 error occurs when endogenous carnitine acetyltransferase synthesizes true AcCh, resulting in mistaken evidence for ChAc. This is demonstrated by the fact that the choline substrate Km-value for the neuronal or true ChAc from mouse brain is 0.73 +/- 0.06 mM while the Km-value of choline substrate for purified CarAc from pigeon breast muscle is 108 +/- 4 mM. Type 2 error has occurred for the estimation of putative ChAc in rat heart. The rat heart ChAc was measured in previous studies utilizing a concentration of 30 mM choline substrate. While saturation of neuronal ChAc is observed at 2-5 mM choline, saturation of the rat heart CarAc enzyme is not reached until over 800 mM. Purified CarAc significantly synthesizes AcCh at 30 mM choline. Thus, putative ChAc has been greatly overestimated in the scientific literature for mammalian sperm, human seminal plasma and rat heart.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号