首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD100 is the first semaphorin described in lymphoid tissues, where it has been shown to be associated with a serine kinase activity. Semaphorins are molecules involved in axon pathfinding during nerve development and act as repellent guidance cues. In the nervous system semaphorins exist as either membrane-bound or secreted forms. We report here a spontaneous processing of membrane CD100, suggesting that it is also produced as a diffusable semaphorin from lymphoid cells. Monomeric and homodimeric forms of CD100 are expressed by T lymphocytes and CD100-transfected fibroblasts. We demonstrate that CD100 is released through a proteolytic process blocked by metalloprotease inhibitors. In T cells, only soluble CD100 dimers are produced, suggesting that CD100 dimerization is required for proteolysis. In agreement, we observe that increasing membrane dimers strongly favors shedding of the molecule. By expressing a CD100 molecule mutated at cysteine 674 into a COS cell system, we additionally demonstrate that this particular residue in the extracellular domain of the molecule is required for dimerization. Finally, we show that staurosporine, a serine kinase inhibitor, enhances the membrane cleavage of CD100. Together these results demonstrate that membrane CD100 is cleaved by a metalloprotease-dependent process, which is probably regulated by phosphorylation. Mainly, these findings shed light on a possible function for the semaphorin region of CD100 as a long range guidance cue in the immune system.  相似文献   

2.
The semaphorin family consists of soluble and membrane-bound proteins that act as chemorepulsive factors in neuronal development, thereby playing a crucial role in axon guidance. Although they are expressed in a broad range of embryonic and adult tissues, their physiological role outside the nervous system remains to be determined. Recently, emerging evidence has suggested that several semaphorins function as part of the immune system. CD100/Sema4D is the first semaphorin family member for which a critical role in the immune response has been identified. CD100 is involved in several arms of the immune response, including humoral and cell-based immunity. This review will focus on our current understanding of the role of this immunoregulatory semaphorin.  相似文献   

3.
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.  相似文献   

4.
CD100/Sema4D is a 150-kDa transmembrane protein that belongs to the semaphorin family. Binding of CD100 to CD72 enhances the immune response by turning off the negative signaling effects of CD72. To investigate the physiological functions of CD100 in vivo, we generated transgenic mice expressing a truncated form of CD100. A large amount of the soluble form of CD100 was detected in the sera of mice expressing a truncated form of CD100, although the amount of CD100 was only slightly elevated on the surface of B cells. In the mutant mice the development of conventional B and T cells appeared normal in terms of the surface marker phenotypes, while the number of CD5(+) B-1 cells in the peritoneal cavity increased in comparison with wild-type mice. In vitro proliferation and Ig production of B cells in response to CD40 stimulation were considerably enhanced in mice expressing a truncated form of CD100. Additionally, in vivo both Ab responses against T cell-dependent Ags and generation of Ag-specific T cells were enhanced. Furthermore, introduction of the CD100-transgene could restore in vitro B cell responses as well as in vivo Ab production against T cell-dependent Ag in CD100-deficient mice. Collectively, these results not only indicate that CD100 has an important role in the immune system, but also that the soluble form of CD100 released from the cell surface can exert functions in vivo.  相似文献   

5.
An inappropriate cross talk between activated T lymphocytes infiltrating the CNS and neural cells can sustain the onset and progression of demyelination and axonal degeneration in neuroinflammatory diseases. To mimic this deleterious cross talk, we designed an experimental paradigm consisting of transient cocultures of T lymphocytes chronically activated by retrovirus infection (not virus productive) with human multipotent neural precursors or primary oligodendrocytes from rat brain. We showed that activated T lymphocytes induced apoptotic death of multipotent neural progenitors and immature oligodendrocytes after a progressive collapse of their process extensions. These effects were reminiscent of those induced by brain semaphorin on neural cells. Blockade by specific Abs of soluble CD100 (sCD100)/semaphorin 4D released by activated T cells, or treatment with rsCD100, demonstrated that this immune semaphorin has the ability to collapse oligodendrocyte process extensions and to trigger neural cell apoptosis, most likely through receptors of the plexin family. The specific presence of sCD100 in the cerebrospinal fluid and of CD100-expressing T lymphocytes in the spinal cord of patients suffering with neuroinflammatory demyelination pointed to the potential pathological effect of sCD100 in the CNS. Thus, our results show that CD100 is a new important element in the deleterious T cell-neural cell cross talk during neuroinflammation and suggest its role in demyelination or absence of remyelination in neuroinflammatory diseases including multiple sclerosis and human T lymphotropic virus type 1-associated myelopathy.  相似文献   

6.
CD100 belongs to the semaphorin family, several members of which are known to act as repulsive axonal guidance factors during neuronal development. We have previously demonstrated that CD100 plays a crucial role in humoral immunity. In this study, we show that CD100 is also important for cellular immunity through the maturation of dendritic cells (DCs). CD100(-/-) mice fail to develop experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide, because myelin oligodendrocyte glycoprotein-specific T cells are not generated in the absence of CD100. In vitro studies with T cells from OVA-specific TCR-transgenic mice demonstrate that Ag-specific T cells lacking CD100 fail to differentiate into cells producing either IL-4 or IFN-gamma in the presence of APCs and OVA peptide. In addition, DCs from CD100(-/-) mice display poor allostimulatory capabilities and defects in costimulatory molecule expression and IL-12 production. The addition of exogenous soluble rCD100 restores normal functions in CD100(-/-) DCs and further enhances functions of normal DCs. Furthermore, treatment of Ag-pulsed DCs with both soluble CD100 and anti-CD40 before immunization significantly enhances their immunogenicity. This treatment elicits improved T cell priming in vivo, enhancing both primary and memory T cell responses. Collectively, these results demonstrate that CD100, which enhances the maturation of DCs, is essential in the activation and differentiation of Ag-specific T cells.  相似文献   

7.
Semaphorins were discovered 11 years ago as molecular cues for axon guidance that are conserved from invertebrates to humans. More than 20 semaphorin genes have been identified in mammals and their protein products are now known to be involved in a range of processes from the guidance of cell migration to the regulation of the immune response, angiogenesis and cancer. Plexins, either alone or in association with neuropilins, constitute high-affinity semaphorin receptors. However, other transmembrane molecules have been implicated in semaphorin receptor complexes, and interactions between plexins and a range of intracellular effectors have been reported. These data indicate that semaphorins might be able to elicit responses through more than one signalling pathway. Interestingly, according to recent findings, the semaphorin-dependent control of cell migration crucially involves integrin-based adhesive structures through which polarized cell-membrane protrusion is coupled to cytoskeletal dynamics. This review focuses on the mechanisms whereby semaphorins are thought to regulate cell migration.  相似文献   

8.
CD100, a member of the semaphorin family, is a costimulatory molecule in adaptive immune responses by switching off CD72's negative signals. However, CD100's potential pathogenetic effects in damaging immune responses remain largely unexplored. We tested the hypothesis that CD100 plays a pathogenetic role in experimental immune complex glomerulonephritis. Daily injection of horse apoferritin for 14 days induced immune complex formation, mesangial proliferative glomerulonephritis and proteinuria in CD100-intact (CD100+/+) BALB/c mice. CD100-deficient (CD100-/-) mice were protected from histological and functional glomerular injury. They exhibited reduced deposition of Igs and C3 in glomeruli, reduced MCP-1 and MIP-2 intrarenal mRNA expression, and diminished glomerular macrophage accumulation. Attenuated glomerular injury was associated with decreased Ag-specific Ig production, reduced CD4+ cell activation and cytokine production. Following Ag injection, CD4+ cell CD100 expression was enhanced and dendritic cell CD86 expression was up-regulated. However, in CD100-/- mice, dendritic cell CD86 (but not CD80) up-regulation was significantly attenuated. Following i.p. immunization, CD86, but not CD80, promotes early Ag-specific TCR-transgenic DO11.10 CD4+ cell proliferation and IFN-gamma production, suggesting that CD100 expression enables full expression of CD86 and consequent CD4+ cell activation. Transfer of CD100+/+ DO11.10 cells into CD100-/- mice resulted in decreased proliferation demonstrating that CD100 from other sources in addition to CD100 from Ag-specific CD4+ cells plays a role in initial T cell proliferation. Although T cell-B cell interactions also may be relevant, these studies demonstrate that CD100 enhances pathogenetic humoral immune responses and promotes the activation of APCs by up-regulating CD86 expression.  相似文献   

9.
The semaphorins     
Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.  相似文献   

10.
The nonpolymorphic soluble HLA-G1 (sHLA-G1) isoform has been reported to be secreted by trophoblast cells at the materno-fetal interface, suggesting that it may act as immunomodulator during pregnancy. In this paper, we report that affinity-purified beta2-microglobulin-associated sHLA-G1 triggered apoptosis in activated, but not resting CD8+ peripheral blood cells. We demonstrate by Western blotting that sHLA-G1 enhanced CD95 ligand expression in activated CD8+ cells. Cytotoxicity was inhibited by preincubation of the cells with a CD95 antagonist mAb (ZB4) or a soluble recombinant CD95-Fc, indicating that apoptosis is mediated through the CD95/CD95 ligand pathway. Finally, we show that such sHLA-G1-induced apoptosis depends on the interaction with CD8 molecules, with cell death being blocked by various CD8 mAbs.  相似文献   

11.
Recognition by scavenger receptor cysteine-rich domains on membrane proteins regulates innate and adaptive immune responses. Two receptors expressed primarily on T cells, CD5 and CD6, are linked genetically and are structurally similar, both containing three scavenger receptor cysteine-rich domains in their extracellular regions. A specific cell surface interaction for CD5 has been difficult to define at the molecular level because of the susceptibility of CD5 protein to denaturation. By using soluble CD5 purified at neutral pH to preserve biological activity, we show that CD5 mediates species-specific homophilic interactions. CD5 domain 1 only is involved in the interaction. CD5 mAbs that have functional effects in humans, rats, and mice block homophilic binding. Ag-specific responses by mouse T cells in vitro were increased when engagement of human CD5 domain 1 was inhibited by mutation or by IgG or Fab fragment from a CD5 mAb. This showed that homophilic binding results in productive engagement. Enhancement of polyclonal immune responses of rat lymph node cells by a Fab fragment from a CD5 mAb shown to block homophilic interactions provided evidence that the extracellular region of CD5 regulates inhibition in normal cells. These biochemical and in vitro functional assays provide evidence that the extracellular region of CD5 regulates immunity through species-specific homophilic interactions.  相似文献   

12.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

13.
The class-3 semaphorins (sema3s) include seven family members. Six of them bind to neuropilin-1 (np1) or neuropilin-2 (np2) receptors or to both, while the seventh, sema3E, binds to the plexin-D1 receptor. Sema3B and sema3F were previously characterized as tumor suppressors and as inhibitors of tumor angiogenesis. To determine if additional class-3 semaphorins such as sema3A, sema3D, sema3E and sema3G possess anti-angiogenic and anti-tumorigenic properties, we expressed the recombinant full length semaphorins in four different tumorigenic cell lines expressing different combinations of class-3 semaphorin receptors. We show for the first time that sema3A, sema3D, sema3E and sema3G can function as potent anti-tumorigenic agents. All the semaphorins we examined were also able to reduce the concentration of tumor associated blood vessels although the potencies of the anti-angiogenic effects varied depending on the tumor cell type. Surprisingly, there was little correlation between the ability to inhibit tumor angiogenesis and their anti-tumorigenic activity. None of the semaphorins inhibited the adhesion of the tumor cells to plastic or fibronectin nor did they modulate the proliferation of tumor cells cultured in cell culture dishes. However, various semaphorins were able to inhibit the formation of soft agar colonies from tumor cells expressing appropriate semaphorin receptors, although in this case too the inhibitory effect was not always correlated with the anti-tumorigenic effect. In contrast, the anti-tumorigenic effect of each of the semaphorins correlated very well with tumor cell expression of specific signal transducing receptors for particular semaphorins. This correlation was not broken even in cases in which the tumor cells expressed significant concentrations of endogenous semaphorins. Our results suggest that combinations of different class-3 semaphorins may be more effective than single semaphorins in cases in which tumor cells express more than one type of semaphorin receptors.  相似文献   

14.
Neutrophil migration to lung alveoli is a characteristic of lung diseases and is thought to occur primarily via capillaries rather than postcapillary venules. The role of adhesion molecules CD18 and CD29 on this migration in a mouse model of lung inflammation has been investigated. The number of neutrophils present in bronchoalveolar lavage fluid was determined 4 h after intratracheal instillation of LPS (0.1-1 microg) or murine recombinant KC (CXC chemokine, 0.03-0.3 microg). Both stimuli produced a dose-related increase in neutrophil accumulation. Intravenous anti-mouse CD18 mAb, 2E6 (0.5 mg/mouse), significantly (p < 0.001) attenuated LPS (0.3 microg)- but not KC (0.3 microg)-induced neutrophil accumulation. The anti-mouse CD29 mAb, HM beta 1-1 (0.02 mg/mouse), significantly (p < 0.05) inhibited both LPS (0.3 microg)- and KC (0.3 microg)-induced neutrophil migration. A second mAb to CD18 (GAME-46) and both F(ab')(2) and Fab of HM beta 1-1 produced similar results to those above, while coadministration of mAbs did not result in greater inhibition. Electron microscopy studies showed that CD29 was involved in the movement of neutrophils from the interstitium into alveoli. The effect of mAbs to CD49 (alpha integrin) subunits of CD29 was also examined. mAbs to CD49e and CD49f inhibited both responses, while anti-CD49b and CD49d significantly inhibited responses to KC only. These data suggest that CD29 plays a critical role in neutrophil migration in pulmonary inflammation and that CD49b and CD49d mediate CD18-independent neutrophil accumulation.  相似文献   

15.
The distribution of immune cells within the gut-associated lymphoid tissues (GALT) of swine is highly organized. The appearance of such cells could not be separated from the effects of age, weaning and exposure to environment. Here, we have examined the distribution patterns of a subset of CD3a+ T and CD21+ B cells as well as S-100 protein+ cells and secretory (s) IgA+ cells within GALT compartments (such as jejunal lamina propria = JLP, ileal Peyerís patches = IPP, and mesenteric lymph node = MLN) of juvenile 8-week-old conventionally reared pigs using either two monoclonal antibodies (mAbs) or polyclonal antibodies (pAbs) in the immunohistochemical staining techniques with avidin-biotin complex (ABC) or peroxidase-antiperoxidase complex (PAP), respectively. The most potent porcine T-cell marker--CD3 surface antigen--is expressed as CD3a epitope on ileal intraepithelial lymphocytes, and numerous lymphocytes in the extrafollicular areas of MLN and dome region of IPP. Conversely, the cells expressing CD21 surface molecules were only demonstrable in the interfollicular areas of MLN and in the germinal centers of IPP. A strong reaction to sIgA was displayed by the plasma cells in the lumen of crypts and those residing the lamina propria of jejunum and ileum. The S-100 protein+ cells were numerous in JLP around the crypts and in IPP of weaned pigs. Both applied mAbs proved to be useful reagents for phenotypic and functional analyses of porcine lymphoid cell subsets by the ABC technique. However, further investigation of the S-100 protein marker is needed to determine which (if any) subset of porcine CD3+ CD4- CD8+ T cells could be designated as orthologue of human CD8+ CD11b+ suppressor T cells.  相似文献   

16.
CD93 is a highly glycosylated transmembrane protein expressed on monocytes, neutrophils, endothelial cells, and stem cells. Antibodies directed at CD93 modulate phagocytosis, and CD93-deficient mice are defective in the clearance of apoptotic cells from the inflamed peritoneum. In this study we observe that CD93, expressed on human monocytes and neutrophils, is susceptible to phorbol dibutyrate-induced protein ectodomain shedding in a time- and dose-dependent manner. The soluble fragment found in culture supernatant retains the N-terminal carbohydrate recognition domain and the epidermal growth factor repeats after ectodomain cleavage. Importantly, a soluble form of the CD93 ectodomain was detected in human plasma, demonstrating that shedding is a physiologically relevant process. Inhibition of metalloproteinases with 1,10-phenanthroline inhibited shedding, but shedding was independent of TNF-alpha-converting enzyme (a disintegrin and metalloproteinase 17). Phorbol dibutyrate-induced CD93 shedding on monocytes was accompanied by decreased surface expression, whereas neutrophils displayed an increase in surface expression, suggesting that CD93 shed from the neutrophil surface was rapidly replaced by CD93 from intracellular stores. Cross-linking CD93 on human monocytes with immobilized anti-CD93 mAbs triggered shedding, as demonstrated by a decrease in cell-associated, full-length CD93 concomitant with an increase in CD93 intracellular domain-containing cleavage products. In addition, the inflammatory mediators, TNF-alpha and LPS, stimulated ectodomain cleavage of CD93 from monocytes. These data demonstrate that CD93 is susceptible to ectodomain shedding, identify multiple stimuli that trigger shedding, and identify both a soluble form of CD93 in human plasma and intracellular domain containing cleavage products within cells that may contribute to the physiologic role of CD93.  相似文献   

17.
18.
Semaphorins were originally identified as axon guidance cues in the development of the nervous system. In recent years, numerous studies have determined that they are also involved in organogenesis, vascularization/angiogenesis, oncogenesis, and immune responses. In addition, the mechanisms underlying the diverse functions of semaphorins and their receptors have been identified. Recently, significant advances have been made in our understanding of the roles of semaphorins in bone remodeling, particularly the regulation of osteoclast and osteoblast differentiation and migration. Moreover, dysregulated semaphorin expression causes severe bone diseases, including osteoporosis and osteopetrosis. This review focuses on advanced findings on the role of semaphorins/receptors and their intracellular signaling in the regulation of bone homeostasis.  相似文献   

19.
The possibility that the sphingomyelin (SM)-ceramide pathway is activated by CD40, a transmembrane glycoprotein belonging to the tumor necrosis factor receptor superfamily and that plays a critical role in the regulation of immune responses has been investigated. We demonstrate that incubation of Epstein-Barr virus-transformed lymphoid cells with an anti-CD40 antibody acting as an agonist results in the stimulation of a neutral sphingomyelinase, hydrolysis of cellular SM, and concomitant ceramide generation. In addition, SM degradation was observed in acid sphingomyelinase-deficient cells, as well as after ligation by soluble CD40 ligand. The anti-CD40 antibody, as well as the soluble CD40 ligand induced a decrease in thymidine incorporation and morphological features of apoptosis, which were mimicked by cell-permeant or bacterial sphingomyelinase-produced ceramides. Stable expression of a dominant-negative form of the FAN protein (factor associated with neutral sphingomyelinase activation), which has been reported to mediate tumor necrosis factor-induced activation of neutral sphingomyelinase, significantly inhibited CD40 ligand-induced sphingomyelinase stimulation and apoptosis of transformed human fibroblasts. Transformed fibroblasts from FAN knockout mice were also protected from CD40-mediated cell death. Finally, anti-CD40 antibodies were able to co-immunoprecipitate FAN in control fibroblasts but not in cells expressing the dominant-negative form of FAN, indicating interaction between CD40 and FAN. Altogether, these results strongly suggest that CD40 ligation can activate via FAN a neutral sphingomyelinase-mediated ceramide pathway that is involved in the cell growth inhibitory effects of CD40.  相似文献   

20.
Semaphorins, the plexin family of semaphorin receptors, and scatter factor receptors share evolutionarily conserved protein modules, such as the semaphorin domain and Met Related Sequences (MRS). All these proteins also have in common a role in mediating cell guidance cues. During development, scatter factor receptors control cell migration, epithelial tubulogenesis, and neurite extension. Semaphorins and their receptors are known signals for axon guidance; they are also suspected to regulate developmental processes involving cell migration and morphogenesis, and have been implicated in immune function and tumor progression. Scatter factors and secreted semaphorins are diffusible ligands, whereas membrane-bound semaphorins signal by cell-cell interaction. Cell guidance control by semaphorins requires plexins, alone or in a receptor complex with neuropilins. Semaphorins, besides their role in axon guidance, are expected to have multiple functions in morphogenesis and tissue remodeling by mediating cell-repelling cues through plexin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号