首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The acid-sensing ion channel (ASIC) subunits ASIC1, ASIC2, and ASIC3 are members of the amiloride-sensitive Na+ channel/degenerin family of ion channels. They form proton-gated channels that are expressed in the central nervous system and in sensory neurons, where they are thought to play an important role in pain accompanying tissue acidosis. A splice variant of ASIC2, ASIC2b, is not active on its own but modifies the properties of ASIC3. In particular, whereas most members of the amiloride-sensitive Na+ channel/degenerin family are highly selective for Na+ over K+, ASIC3/ASIC2b heteromultimers show a nonselective component. Chimeras of the two splice variants allowed identification of a 9-amino acid region preceding the first transmembrane (TM) domain (pre-TM1) of ASIC2 that is involved in ion permeation and is critical for Na+ selectivity. Three amino acids in this region (Ile-19, Phe-20, and Thr-25) appear to be particularly important, because channels mutated at these residues discriminate poorly between Na+ and K+. In addition, the pH dependences of the activity of the F20S and T25K mutants are changed as compared with that of wild-type ASIC2. A corresponding ASIC3 mutant (T26K) also has modified Na+ selectivity. Our results suggest that the pre-TM1 region of ASICs participates in the ion pore.  相似文献   

2.
The flavonoid quercetin is a low molecular weight substance found in fruits and vegetables. Aside from its anti-oxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions. The α7 nicotinic acetylcholine receptor (α7 nAChR) has a Ca2+-binding site, is highly permeable to the Ca2+ ion, and plays important roles in Ca2+-related normal brain functions. Dysfunctions of α7 nAChR are associated with a variety of neurological disorders. In the present study, we investigated the effects of quercetin on the ACh-induced inward peak current (I ACh ) in Xenopus oocytes that heterologously express human α7 nAChR. I ACh was measured with the two-electrode voltage clamp technique. In oocytes injected with α7 nAChR cRNA, the effects of the co-application of quercetin on I ACh were concentration-dependent and reversible. The ED50 was 36.1 + 6.1 μM. Quercetin-mediated enhancement of I ACh caused more potentiation when quercetin was pre-applied. The degree of I ACh potentiation by quercetin pre-application was time-dependent and saturated after 1 min. Quercetin-mediated I ACh enhancement was not affected by ACh concentration and was voltage-independent. However, quercetin-mediated I ACh enhancement was dependent on extracellular Ca2+ concentrations and was specific to the Ca2+ ion, since the removal of extracellular Ca2+ or the addition of Ba2+ instead of Ca2+ greatly diminished quercetin enhancement of IACh. The mutation of Glu195 to Gln195, in the Ca2+-binding site, almost completely diminished quercetin-mediated I ACh enhancement. These results indicate that quercetin-mediated I ACh enhancement human α7 nAChR heterologously expressed in Xenopus oocytes could be achieved through interactions with the Ca2+-binding site of the receptor.  相似文献   

3.
Choi S  Lee JH  Oh S  Rhim H  Lee SM  Nah SY 《Molecules and cells》2003,15(1):108-113
Treatment with ginsenosides, major active ingredients of Panax ginseng, produces a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. Recent reports showed that ginsenoside Rg2 inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. In the present study, we investigated the effect of ginsenoside Rg2 on human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity, which is also one of the ligand-gated ion channel families. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. The ginsenoside Rg2 itself had no effect on the oocytes that were injected with H2O as well as on the oocytes that were injected with the 5-HT3A receptor cRNA. In the oocytes that were injected with the 5-HT3A receptor cRNA, the pretreatment of ginsenoside Rg2 inhibited the 5-HT-induced inward peak current (I5-HT) The inhibitory effect of ginsenoside Rg2 on I5-HT was dose dependent and reversible. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 was 22.3 +/- 4.6 microM. The inhibition of I5-HT by ginsenoside Rg2 was non-competitive and voltage-independent. These results indicate that ginsenoside Rg2 might regulate the 5-HT3A receptors that are expressed in Xenopus oocytes. Further, this regulation on the ligand-gated ion channel activity by ginsenosides might be one of the pharmacological actions of Panax ginseng.  相似文献   

4.
Ginsenosides are major active ingredients of Panax ginseng. They have a number of pharmacological and physiological actions and are transformed into compound K (CK) or M4 by intestinal microorganisms. CK is derived from protopanaxadiol (PD) ginsenosides, whereas M4 is derived from protopanaxatriol (PT) ginsenosides. Recent reports show that ginsenosides act as pro-drugs for these metabolites. In previous work we demonstrated that the ginsenoside Rg2 regulates human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity [Choi et al. (2003)]. In the present study, we investigated the effect of CK and M4 on the activity of the human 5-HT3A receptor channel. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. Treatment with CK or M4 had no effect on oocytes injected with 5-HT3A receptor cRNA. However pretreatment with M4 or CK followed by injection of 5-HT3A receptor cRNA led to reversible inhibition of the 5-HT-induced inward peak current (I(5-HT)). Half maximal inhibitory concentrations (IC50) of CK and M4 were 36.9 +/- 9.6 and 7.3 +/- 2.2 microM, respectively. Inhibition by M4 was non-competitive and voltage-independent. These results indicate that M4, a metabolite of PT ginsenosides, acts primarily on 5-HT3A receptors and further, that ginsenosides as well as ginsenoside metabolites can influence 5-HT3A receptor channel activity in Xenopus oocytes.  相似文献   

5.
RIC-3 has been identified as a molecule essential for the recruitment of functional nicotinic acetylcholine receptors composed of alpha7, but it exhibits inhibitory effects on alpha4beta2 or alpha3beta4 receptors. In this study, we investigated the role of RIC-3 in the recruitment of 5-hydroxytryptamine type 3A (5-HT(3A)) receptors to the cell surface. Although RIC-3 is not essential for the surface transport of 5-HT(3A) receptors, we found that its presence enhances both receptor transport and function in a concentration-dependent manner. RIC-3 is localized to the endoplasmic reticulum, as evidenced by co-localization with the chaperone molecule, binding protein (BiP). RIC-3 is not detected at significant levels on the cell surface when expressed alone or in the presence of 5-HT(3A). RIC-3 and 5-HT(3A) show a low level interaction that is transient (<4 h). That RIC-3 can interact with an endoplasmic reticulum-retained 5-HT(3A) construct, combined with the transient interaction observed and lack of significant surface-expressed RIC-3, suggests that RIC-3 may play a role in 5-HT(3A) receptor folding, assembly, or transport to the cell surface.  相似文献   

6.
Ligand-gated ion channels are integral membrane proteins that mediate fast synaptic transmission. Molecular biological techniques have been extensively used for determining the structure-function relationships of ligand-gated ion channels. However, the transduction mechanisms that link agonist binding to channel gating remain poorly understood. Arginine 222 (Arg-222), located at the distal end of the extracellular N-terminal domain immediately preceding the first transmembrane domain (TM1), is conserved in all 5-HT3A receptors and alpha7-nicotinic acetylcholine receptors that have been cloned. To elucidate the possible role of Arg-222 in the function of 5-HT3A receptors, we mutated the arginine residue to alanine (Ala) and expressed both the wild-type and the mutant receptor in human embryonic kidney 293 cells. Functional studies of expressed wild-type and mutant receptors revealed that the R222A mutation increased the apparent potency of the full agonist, serotonin (5-HT), and the partial agonist, 2-Me-5-HT, 5- and 12-fold, respectively. In addition, the mutation increased the efficacy of 2-Me-5-HT and converted it from a partial agonist to a full agonist. Furthermore, this mutation also converted the 5-HT3 receptor antagonist/very weak partial agonist, apomorphine, to a potent agonist. Kinetic analysis revealed that the R222A mutation increased the rate of receptor activation and desensitization but did not affect rate of deactivation. The results suggest that the pre-TM1 amino acid residue Arg-222 may be involved in the transduction mechanism linking agonist binding to channel gating in 5-HT3A receptors.  相似文献   

7.
Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity.  相似文献   

8.
Aromatic residues play an important role in the ligand-binding domain of Cys loop receptors. Here we examine the role of the 11 tyrosines in this domain of the 5-HT3 receptor in ligand binding and receptor function by substituting them for alanine, for serine, and, for some residues, also for phenylalanine. The mutant receptors were expressed in HEK293 cells and Xenopus oocytes and examined using radioligand binding, Ca2+ imaging, electrophysiology, and immunochemistry. The data suggest that Tyr50 and Tyr91 are critical for receptor assembly and/or structure, Tyr141 is important for antagonist binding and/or the structure of the binding pocket, Tyr143 plays a critical role in receptor gating and/or agonist binding, and Tyr153 and Tyr234 are involved in ligand binding and/or receptor gating. Tyr73, Tyr88, Tyr94, Tyr167, and Tyr240 do not appear to play major roles either in the structure of the extracellular domain or in ligand binding. The data support the location of these residues on a model of 5-HT docked into the ligand-binding domain and also provide evidence for the structural similarity of the extracellular domain to AChBP and the homologous regions of other Cys loop ligand-gated ion channels.  相似文献   

9.
By using the yeast two-hybrid system, we previously isolated a cDNA clone encoding a novel member of the multivalent PDZ protein family called MUPP1 containing 13 PDZ domains. Here we report that the C terminus of the 5-hydroxytryptamine type 2C (5-HT(2C)) receptor selectively interacts with the 10th PDZ domain of MUPP1. Mutations in the extreme C-terminal SSV sequence of the 5-HT(2C) receptor confirmed that the SXV motif is critical for the interaction. Co-immunoprecipitations of MUPP1 and 5-HT(2C) receptors from transfected COS-7 cells and from rat choroid plexus verified this interaction in vivo. Immunocytochemistry revealed an SXV motif-dependent co-clustering of both proteins in transfected COS-7 cells as well as a colocalization in rat choroid plexus. A 5-HT(2C) receptor-dependent unmasking of a C-terminal vesicular stomatitis virus epitope of MUPP1 suggests that the interaction triggers a conformational change within the MUPP1 protein. Moreover, 5-HT(2A) and 5-HT(2B), sharing the C-terminal EX(V/I)SXV sequence with 5-HT(2C) receptors, also bind MUPP1 PDZ domains in vitro. The highest MUPP1 mRNA levels were found in all cerebral cortical layers, the hippocampus, the granular layer of the dentate gyrus, as well as the choroid plexus, where 5-HT(2C) receptors are highly enriched. We propose that MUPP1 may serve as a multivalent scaffold protein that selectively assembles and targets signaling complexes.  相似文献   

10.
The purpose of this study was to determine the effect of methysergide, ketanserin, granisetron, cisapride, and renzapride on serotonin 5-hydroxytryptamine-evoked short-circuit current in muscle and myenteric plexus-stripped pig jejunum using the Ussing chamber technique. Ketanserin, granisetron, cisapride, and renzapride all reduced the 5-hydroxytryptamine-induced increase in short-circuit current by about 50%. Combination of ketanserin and granisetron only reduced the 5-hydroxytryptamine-induced peak increase in short-circuit current by 25%. Cisapride caused a small concentration-dependent increase in short-circuit current. Atropine and hexamethonium both almost completely suppressed the cisapride-induced peak increase in short-circuit current. Ketanserin, granisetron, methysergide, and renzapride did not alter the basal short-circuit current. These results suggest that 5-hydroxytryptamine elicits an increase in short-circuit current by activating epithelial and submucosal 5-hydroxytryptamine2 and 5-hydroxytryptamine3 receptor subtypes. Furthermore, the short-circuit current-increasing effect of cisapride, is due to activation of at least muscarinic and nicotinic receptors.Abbreviations 5-HT 5-hydroxytryptamine, serotonin - AUC area under the curve - EC enterochromaffin - ENS enteric nervous system - GI gastrointestinal - MW molecular weight - 5-HTP-DP N-acetyl-5-hydroxytryptophyl-5-hydroxytrytophan amide - SSC short-circuit current - TTX tetrodotoxin  相似文献   

11.
Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.  相似文献   

12.
Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.  相似文献   

13.
Clusterin inhibits apoptosis by interacting with activated Bax   总被引:11,自引:0,他引:11  
Clusterin is an enigmatic glycoprotein that is overexpressed in several human cancers such as prostate and breast cancers, and squamous cell carcinoma. Because the suppression of clusterin expression renders human cancer cells sensitive to chemotherapeutic drug-mediated apoptosis, it is currently an antisense target in clinical trials for prostate cancer. However, the molecular mechanisms by which clusterin inhibits apoptosis in human cancer cells are unknown. Here we report that intracellular clusterin inhibits apoptosis by interfering with Bax activation in mitochondria. Intriguingly, in contrast to other inhibitors of Bax, clusterin specifically interacts with conformation-altered Bax in response to chemotherapeutic drugs. This interaction impedes Bax oligomerization, which leads to the release of cytochrome c from mitochondria and caspase activation. Moreover, we also find that clusterin inhibits oncogenic c-Myc-mediated apoptosis by interacting with conformation-altered Bax. Clusterin promotes c-Myc-mediated transformation in vitro and tumour progression in vivo. Taken together, our results suggest that the elevated level of clusterin in human cancers may promote oncogenic transformation and tumour progression by interfering with Bax pro-apoptotic activities.  相似文献   

14.
Zhu Y  Kong WJ  Xia J  Zhang Y  Cheng HM  Guo CK 《生理学报》2008,60(3):375-381
To confirm the existence of cholinergic receptors on type I vestibular hair cells (VHCs I) of guinea pigs and to study the properties of the cholinergic receptor-mediated ion channels on VHCs I, electrophysiological responses of isolated VHCs I to external ACh were examined by means of whole-cell patch-clamp recordings. The results showed that 7.5% (21/279) VHCs I were found to be sensitive to ACh (10-1000 mumol/L). ACh generated an outward current in a steady, slow, dose-dependent [EC(50) was (63.78+/-2.31) mumol/L] and voltage-independent manner. In standard extracellular solution, ACh at the concentration of 100 mumol/L triggered a calcium-dependent current of (170+/-15) pA at holding potential of -50 mV, and the current amplitude could be depressed by extracellularly added calcium-dependent potassium channel antagonist TEA. The time interval for the next complete activation of ACh-sensitive current was no less than 1 min. The ion channels did not shut off even when they were exposed to ACh for an extended period of time (8 min). The results suggest that dose-dependent, calcium-dependent and voltage-independent cholinergic receptors were located on a few of the VHCs I investibular epithelium of guinea pigs. The cholinergic receptors did not show desensitization to ACh. This work reveals the existence of efferent neurotransmitter receptors on VHCs I and helps in understanding the function of vestibular efferent nervous system, and may provide some useful information on guiding the clinical rehabilitative treatment of vertigo.  相似文献   

15.
肝素作为传统抗凝剂,常用来治疗癌症患者静脉血栓。临床和实验数据证实,肝素具有抗肿瘤活性。同时也有大量研究发现,肝素有抗肿瘤转移的作用。肝素可以通过各种机制抑制肿瘤转移,包括抑制细胞间的相互作用;抑制肝素酶的表达;调节各种生长因子以及调节机体凝血功能等。选凝素(seletin)是介导肿瘤转移初始阶段的重要因子,而肝素能够抑制选凝素介导的的肿瘤细胞与白细胞、血小板及内皮细胞的相互作用,从而达到抗转移的效果。本文综述了肝素抑制选凝素介导的肿瘤转移的作用机制,为肝素在抗肿瘤转移方面的临床应用提供参考。  相似文献   

16.
The functions of the 5-hydroxytryptamine3 (5-HT3) and 5-hydroxytryptamine4 (5-HT4) receptors in gastrointestinal tract are complex depending on the species and anatomical regions, and the localization of these receptors in the human rectum was unclear. We examined the localization of the 5-HT3 and 5-HT4 receptors in human rectum by in vitro receptor autoradiography using [125I](S)iodozacopride and [125I] SB207710 as a ligand, respectively. Specific [125I](S)iodozacopride binding sites were clearly evident in the myenteric plexus, whereas, low levels of [125I]SB207710 binding sites were distributed over the muscle but not to the myenteric plexus. The 5-HT3 receptor located on the myenteric plexus and the 5-HT4 receptor on the smooth muscle may participate in contractility and relaxation of human rectum, respectively.  相似文献   

17.

Background  

The cell microenvironment, especially extracellular matrix proteins, plays an important role in tumor cell response to chemotherapeutic drugs. The present study was designed to investigate whether this microenvironment can influence the antimigratory effect of an anthracycline drug, doxorubicin, when tumor cells are grown in a matrix of type I collagen, a three-dimensional (3D) context which simulates a natural microenvironment.  相似文献   

18.
The classical electrophysiological method to measure the function of the 5-hydroxytryptamine (serotonin) type 3 (5-HT(3)) receptor, a cation-permeable ligand-gated ion channel, is time-consuming and not suitable for high-throughput screening. Therefore, we have optimized the conditions for a sensitive assay suitable to measure 5-HT(3) receptor responses in cell suspension based on aequorin bioluminescence caused by Ca(2+) influx. The assay, carried out in 96-well plates, was applied for the pharmacological characterization of 5-HT(3) receptors on human embryonic kidney (HEK) 293 cells transiently coexpressing apoaequorin and either the human homopentameric 5-HT(3A) receptor or the human heteromeric 5-HT(3A/B) receptor in the same subset of cells. Thus, the luminescence signal originates exclusively from transfected cells, leading to a high signal/noise ratio, a major advantage compared with fluorescence techniques using Ca(2+)-sensitive dyes. The potencies of two 5-HT(3A) receptor agonists and two antagonists as well as the potency and efficacy of serotonin at the heteromeric 5-HT(3A/B) receptor were comparable to those reported using other functional methods. In conclusion, the aequorin assay described here provides a convenient and highly sensitive method for functional characterization of 5-HT(3) receptors that is well suited for high-throughput screening.  相似文献   

19.
Two subunits of the 5-hydroxytryptamine type 3 (5-HT3) have been identified (5-HT3A and 5-HT3B) that assemble into homomeric (5-HT3A) and heteromeric (5-HT3A+5-HT3B) complexes. Unassembled 5-HT3B subunits are efficiently retained within the cell. In this study, we address the mechanism controlling the release of 5-HT3B from the endoplasmic reticulum (ER). An analysis of chimeric 5-HT3A receptor(R).5-HT3BR constructs suggests the presence of elements downstream of the first transmembrane domain of 5-HT3B subunits that inhibit cell surface expression. To investigate this possibility, truncated 5-HT3B subunits were constructed and assessed for their ability to access the cell surface in COS-7 and ts201 cells. Using this approach, we have identified the presence of an ER retention signal located within the first cytoplasmic loop between transmembrane domains I and II of 5-HT3B. Transplantation of this signal (CRAR) into the homologous region of 5-HT3A results in the ER retention of this subunit until rescued by co-assembly with wild-type 5-HT3A. The mutation of this ER retention signal in 5-HT3B (5-HT3BSGER) does not lead to cell surface expression, suggesting the presence of other signals or mechanisms to control the surface expression of 5-HT3BRs. The generation of truncated 5-HT3BSGER constructs confirmed that the CRAR signal does play an important role in the ER retention of 5-HT3B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号