首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sinorhizobium meliloti natural populations show a high level of genetic polymorphism possibly due to the presence of mobile genetic elements such as insertion sequences (IS), transposons, and bacterial mobile introns. The analysis of the DNA sequence polymorphism of the nod region of S. meliloti pSymA megaplasmid in an Italian isolate led to the discovery of a new insertion sequence, ISRm31. ISRm31 is 2,803 bp long and has 22-bp-long terminal inverted repeat sequences, 8-bp direct repeat sequences generated by transposition, and three ORFs (A, B, C) coding for proteins of 124, 115, and 541 amino acids, respectively. ORF A and ORF C are significantly similar to members of the transposase family. Amino acid and nucleotide sequences indicate that ISRm31 is a member of the IS66 family. ISRm31 sequences were found in 30.5% of the Italian strains analyzed, and were also present in several collection strains of the Rhizobiaceae family, including S. meliloti strain 1021. Alignment of targets sites in the genome of strains carrying ISRm31 suggested that ISRm31 inserts randomly into S. meliloti genomes. Moreover, analysis of ISRm31 insertion sites revealed DNA sequences not present in the recently sequenced S. meliloti strain 1021 genome. In fact, ISRm31 was in some cases linked to DNA fragments homologous to sequences found in other rhizobia species.  相似文献   

2.
Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis (“cross-pathway control”) have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body. Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s00438-005-0021-8  相似文献   

3.
为研究苜蓿中华根瘤菌脂肪酸脱饱和酶desA基因在不饱和脂肪酸合成、共生结瘤固氮以及应对逆境胁迫中的功能,为高效利用苜蓿中华根瘤菌提供理论依据,本文通过异体遗传互补和脂肪酸组成薄层层析,分析SmdesA编码蛋白是否具有脱饱和酶的活性并参与不饱和脂肪酸的合成,构建SmdesA的缺失突变株和互补菌株,比较各菌株在不同逆境胁迫条件下的生长速率以及回接宿主植物后与紫花苜蓿共生结瘤的能力.结果表明SmdesA不能互补大肠杆菌CY57中EcfabA的突变,但具有将饱和脂肪酸脱饱和形成不饱和的棕榈油酸和十八碳烯酸的能力.另外,SmdesA缺失突变对苜蓿中华根瘤菌的脂肪酸组成影响不大,但会显著影响低温和高盐条件下菌株的生长速率以及与紫花苜蓿共生结瘤的能力.我们推测,SmdesA参与的脱饱和途径可能是苜蓿中华根瘤菌不饱和脂肪酸合成的补偿途径,其编码的蛋白DesA不是不饱和脂肪酸合成的关键酶,但在应对逆境胁迫和共生结瘤中具有重要的生物学功能.  相似文献   

4.
Seventy different actinomycete isolates were evaluated for their ability to produce keratinase using a keratin-salt agar medium containing ball-milled feather as substrate. A novel feather-degrading isolate obtained from marine sediment produced the highest keratinolytic activity when cultured on broth containing whole feather as a primary source of carbon, nitrogen and energy. Based on phenotypic characterization and analysis of 16S rDNA sequencing the isolate was identified as a Streptomyces sp. MS-2. Maximum keratinase activity (11.2 U/mg protein) was achieved when cells were grown on mineral salt liquid medium containing 1% whole chicken feather adjusted to pH 8 and incubated at 35°C for 72 h at 150 rpm. Reduction of disulphide bridges was also detected, increasing with incubation time. Feather degradation led to an increase in free amino acids such as alanine, leucine, valine and isoleucine. Moreover, methionine and phenylalanine were also produced as microbial metabolites.  相似文献   

5.
Lysine metabolism in a barley mutant resistant to S(2-aminoethyl)cysteine   总被引:1,自引:0,他引:1  
Lysine and S(2-aminoethyl)cysteine (AEC) metabolism were investigated in normal barley (Hordeum vulgare L. cv. Bomi) and a hemozygous recessive AEC-resistant mutant (R906). Feedback regulation of lysine and threonine synthesis from [14C] acetate was unimpaired in plants of the mutant 3 d after germination. Seeds of Bomi and R906 contained similar total amounts of lysine, threonine, methionine and isoleucine. Concentrations of these amino acids in the soluble fraction of plants grown 6 d without AEC were also similar. The concentration of AEC in R906 plants was less than in the parent variety when both were grown in the presence of 0.25 mM AEC for 6 d. The uptake of [3H]AEC and [3H]lysine by roots of R906 was, respectively, 33% and 32% of that by Bomi roots whereas the uptake of these compounds into the scutellum was the same in both the mutant and its parent. The uptake of [3H]leucine and its incorporation into proteins was also the same in Bomi and R906 plants. These results suggest that a transport system specific for lysine and AEC but not leucine is altered or lost in roots of the mutant R906. AEC is incorporated into protein and this could be the reason for inhibition of growth rather than action as a false-feedback inhibitor of lysine biosynthesis.Abbreviations AEC S(2-aminoethyl)cysteine - LYS lysine - THR threonine  相似文献   

6.
Summary DNA fragments carrying the recA genes of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae were isolated by complementing a UV-sensitive recA Escherichia coli strain. Sequence analysis revealed that the coding region of the R. meliloti recA gene consists of 1044 by coding for 348 amino acids whereas the coding region of the R. leguminosarum bv. viciae recA gene has 1053 bp specifying 351 amino acids. The R. meliloti and R. leguminosarum bv. viciae recA genes show 84.8% homology at the DNA sequence level and of 90.1% at the amino acid sequence level. recA mutant strains of both Rhizobium species were constructed by inserting a gentamicin resistance cassette into the respective recA gene. The resulting recA mutants exhibited an increased sensitivity to UV irradiation, were impaired in their ability to perform homologous recombination and showed a slightly reduced growth rate when compared with the respective wild-type strains. The Rhizobium recA strains did not have altered symbiotic nitrogen fixation capacity. Therefore, they represent ideal candidates for release experiments with impaired strains.The accession numbers: X59956 R. LEGUMINOSARUM REC A ALAS-DNA; X59957 R. MELITOTI REC A ALAS-DNA  相似文献   

7.
The colonization ability of Pseudomonas fluorescens F113rif in alfalfa rhizosphere and its interactions with the alfalfa microsymbiont Sinorhizobium meliloti EFB1 has been analyzed. Both strains efficiently colonize the alfalfa rhizosphere in gnotobiotic systems and soil microcosms. Colonization dynamics of F113rif on alfalfa were similar to other plant systems previously studied but it is displaced by S. meliloti EFB1, lowering its population by one order of magnitude in co-inoculation experiments. GFP tagged strains used to study the colonization patterns by both strains indicated that P. fluorescens F113rif did not colonize root hairs while S. meliloti EFB1 extensively colonized this niche. Inoculation of F113rif had a deleterious effect on plants grown in gnotobiotic systems, possibly because of the production of HCN and the high populations reached in these systems. This effect was reversed by co-inoculation. Pseudomonas fluorescens F113 derivatives with biocontrol and bioremediation abilities have been developed in recent years. The results obtained support the possibility of using this bacterium in conjunction with alfalfa for biocontrol or rhizoremediation technologies.  相似文献   

8.
Sphagnum capillifolium var. tenellum, S. magellanicum, and S. recurvum var. brevifolium were regenerated from stem pieces grown in containers to assess their potential for use in peatland restoration projects. The effect of two water levels; peat, peat/sand or peat/clay substrates; and peat decomposition level on the species’ regeneration was evaluated. S. magellanicum attained the greatest cover on the peat or peat/sand mixture using decomposed peat when the growing surface was occasionally inundated. S. recurvum attained the greatest cover grown on the peat or peat/sand mixture using undecomposed peat when the water level was kept below the surface. S. capillifolium showed an affinity for the peat/clay mixture, and overall attained a greater total cover than the other species when grown under the lower water level on all substrate types, with total cover approximately three to five times that of the others. When developing management plans for restoration of mined peatlands, species-specific responses to water level, type and extent of mineral soil mixed with the peat surface, and peat decomposition level should be considered.  相似文献   

9.
Summary The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH 4 + ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.  相似文献   

10.
Deoxysugar, 2′, 3′, 4′-tri-O-methylrhamnose is an essential structural component of spinosyn A and D, which are the active ingredients of the commercial insect control agent, Spinosad. The spnH gene, which was previously assigned as a rhamnose O-methyltransferase based on gene sequence homology, was cloned from the wild-type Saccharopolyspora spinosa and from a spinosyn K-producing mutant that was defective in the 4′-O-methylation of 2′, 3′-tri-O-methylrhamnose. DNA sequencing confirmed a mutation resulting in an amino acid substitution of G-165 to A-165 in the rhamnosyl 4′-O-methyltransferase of the mutant strain, and the subsequent sequence analysis showed that the mutation occurred in a highly conserved region of the translated amino acid sequence. Both spnH and the gene defective in 4′-O-methylation activity (spnH165A) were expressed heterologously in E. coli and were then purified to homogeneity using a His-tag affinity column. Substrate bioconversion studies showed that the enzyme encoded by spnH, but not spnH165A, could utilize spinosyn K as a substrate. When the wild-type spnH gene was transformed into the spinosyn K-producing mutant, spinosyn A production was restored. These results establish that the enzyme encoded by the spnH gene in wild-type S. spinosa is a rhamnosyl 4′-O-methyltransferase that is responsible for the final rhamnosyl methylation step in the biosynthesis of spinosyn A.  相似文献   

11.
A T-DNA tagged mutant line of Arabidopsis thaliana, produced with a promoter trap vector carrying a promoterless gus (uidA) as a reporter gene, showed GUS induction in response to mechanical wounding. Cloning of the chromosomal DNA flanking the T-DNA revealed that the insert had caused a knockout mutation in a PTR-type peptide transporter gene named At5g46050 in GenBank, here renamed AtPTR3. The gene and the deduced protein were characterized by molecular modelling and bioinformatics. Molecular modelling of the protein with fold recognition identified 12 transmembrane spanning regions and a large loop between the sixth and seventh helices. The structure of AtPTR3 resembled the other PTR-type transporters of plants and transporters in the major facilitator superfamily. Computer analysis of the AtPTR3 promoter suggested its expression in roots, leaves and seeds, complex hormonal regulation and induction by abiotic and biotic stresses. The computer-based hypotheses were tested experimentally by exposing the mutant plants to amino acids and several stress treatments. The AtPTR3 gene was induced by the amino acids histidine, leucine and phenylalanine in cotyledons and lower leaves, whereas a strong induction was obtained in the whole plant upon exposure to salt. Furthermore, the germination frequency of the mutant line was reduced on salt-containing media, suggesting that the AtPTR3 protein is involved in stress tolerance in seeds during germination.Figure a Induction of AtPTR3 gene by amino acids. GUS staining of line 9 plants eight hours after induction with amino acids. Control indicates plant treated with water. His, Leu and Phe indicate plants treated with 10 mM amino acids histidine, leucine or phenylalanine, respectively. b Induction of AtPTR3 gene by salt. GUS staining of line 9 plants grown on MS medium on different salt concentrations: Control indicates plant grown on MS medium and 100 mM, 120 mM and 140 mM indicate plants grown on MS medium supplemented with the indicated NaCl concentrations. Size of the plants grown on salt medium has been magnified. c Germination frequency of Atptr3 knockout mutant line is reduced on salt medium. Atptr3 knockout mutant (9) and wild type C24 (WT) sown on MS medium (Control) and MS medium supplemented with salt (140 mM NaCl).   相似文献   

12.
A 4.6 kb DNA fragment was cloned from the DNA library ofStreptomyces ansochromogenes using a partial DNA fragment located in the downstream of promoter-PTH4 as probe. The experiments revealed that this DNA fragment consists ofsaw D gene and a 1.4 kbPvu II fragment which can accelerate mycelium formation ofS. ansochromogenes. The nucleotide sequence of 1.4 kb DNA fragment was determined and analysed; the result indicated that the fragment contains one complete open reading frame (ORF) which encodes a protein with 213 amino acids, and this gene was designated assamfR. The deduced protein has 36% amino acid identities and 52% amino acid similarities in comparison with that encoded byhppR gene, which is involved in the regulation of catabolism for 3-(3-hydroxyphenyl) propionate (3HPP) inRhodococcus globerulus. The function ofsamfR gene was studied using strategy of gene disruption, and the resultingsamfR mutant failed to form aerial hyphae and spores, its development and differentiation stopped at the stage of substrate mycelium in contrast with wild type strain. The results showed that thesamfR gene is closely related toS. ansochromogenes differentiation. Project supported by the National Natural Science Foundation of China (Grant No. 39830010).  相似文献   

13.
Nitrogen fixing rhizobia associated with the Medicago L. genus belong to two closely related species Sinorhizobium medicae and S. meliloti. To investigate the symbiotic requirements of different Medicago species for the two microsymbionts, 39 bacterial isolates from nodules of eleven Medicago species growing in their natural habitats in the Mediterranean basin plus six historical Australian commercial inocula were symbiotically characterized with Medicago hosts. The bacterial species allocation was first assigned on the basis of symbiotic proficiency with M. polymorpha. PCR primers specific for 16S rDNA were then designed to distinguish S. medicae and S. meliloti. PCR amplification results confirmed the species allocation acquired in the glasshouse. PCR fingerprints generated from ERIC, BOXA1R and nif-directed RPO1 primers revealed that the Mediterranean strains were genetically heterogenous. Moreover PCR fingerprints with ERIC and BOX primers showed that these repetitive DNA elements were specifically distributed and conserved in S. meliloti and S. medicae, clustering the strains into two divergent groups according to their species. Linking the Sinorhizobium species with the plant species of origin we have found that S. medicae was mostly associated with medics well adapted to moderately acid soils such as M. polymorpha, M. arabica and M. murex whereas S. meliloti was predominantly isolated from plants naturally growing on alkaline or neutral pH soils such as M. littoralis and M. tornata. Moreover in glasshouse experiments the S. medicae strains were able to induce well-developed nodules on M. murex whilst S. meliloti was not infective on this species. This feature provides a very distinguishing characteristic for S. medicae. Results from the symbiotic, genotypic and cultural characterization suggest that S. meliloti and S. medicae have adapted to different Medicago species according to the niches these medics usually occupy in their natural habitats.  相似文献   

14.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

15.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

16.

Background  

Norvaline is an unusual non-proteinogenic branched-chain amino acid which has been of interest especially during the early enzymological studies on regulatory mutants of the branched-chain amino acid pathway in Serratia marcescens. Only recently norvaline and other modified amino acids of the branched-chain amino acid synthesis pathway got attention again when they were found to be incorporated in minor amounts in heterologous proteins with a high leucine or methionine content. Earlier experiments have convincingly shown that norvaline and norleucine are formed from pyruvate being an alternative substrate of α-isopropylmalate synthase, however so far norvaline accumulation was not shown to occur in non-recombinant strains of E. coli.  相似文献   

17.
K. Niehaus  D. Kapp  A. Pühler 《Planta》1993,190(3):415-425
Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.  相似文献   

18.
A total of 15 rhizobial strains representing Rhizobium meliloti, Rhizobium japonicum, Rhizobium trifolii, Rhizobium leguminosarum, Rhizobium sp. (Sesbania rostrata) and Rhizobium sp. (Hedysarum coronarium), were studied with regard to growth rate under salt stress in defined liquid media. In the presence of inhibitory concentrations of NaCl, enhancement of growth resulting from added glycine betaine was observed for R. meliloti strains and Rhizobium sp. (Hedysarum coronarium) but not for other Rhizobium species. The concentration of glycine betaine required for maximal growth stimulation was very low (1 mM) in comparison with the osmolarity of the medium. The stimulation was shown to be independent of any specific solutes. Other related compounds like proline betaine, carnitine, choline, -butyrobetaine and pipecolate betaine were also effective compounds in restoring the growth rate of cells grown in medium of elevated osmolarity. High rate of glycine betaine uptake was demonstrated in R. meliloti cells grown in media of increased osmotic strength. The intracellular concentration of this solute was found to be 308 mM in 0.3 M NaCl-grown cells and 17 times lower in minimal medium-grown cells. Glycine betaine was used for growth under conditions of low osmolarity but could not serve as sole carbon or nitrogen source in medium of increased osmotic strength. Experiments with [14C]glycine betaine showed that this molecule was not metabolized by cells subjected to osmotic stress, whereas it was rapidly converted to dimethylglycine, sarcosine and glycine in minimal medium-grown cells.Abbreviations LAS lactate-aspartate-salts - LGS lactate-glutamate-salts - LS lactate-succinate - MSY mannitol-salts-yeast - YLS yeast-lactate-succinate  相似文献   

19.
Eighty-eight root-nodule isolates from Lespedeza spp. grown in temperate and subtropical regions of China were characterized by a polyphasic approach. Nine clusters were defined in numerical taxonomy and SDS-PAGE analysis of whole cell proteins. Based upon further characterizations of amplified 16S rDNA restriction analysis (ARDRA), PCR-based restriction fragment length polymorphism of ribosomal IGS, 16S rDNA sequence analysis and DNA-DNA hybridization, these isolates were identified as Bradyrhizobium japonicum, B. elkanii, B. yuanmingense, Mesorhizobium amorphae, M. huakuii, Sinorhizobium meliloti and three genomic species related to B. yuanmingense, Rhizobium gallicum and R. tropici. The Bradyrhizobium species and R. tropici-related rhizobia were mainly isolated from the subtropical region and the species of Mesorhizobium, S. meliloti and R. gallicum-related species were all isolated from the temperate region. Phylogenetic analyses of nifH and nodC indicated that the symbiotic genes of distinct rhizobial species associated with Lespedeza spp. might have different origins and there was no evidence for lateral gene transfer of symbiotic genes. The results obtained in the present study and in a previous report demonstrated that Lespedeza spp. are nodulated by rhizobia with diverse genomic backgrounds and these Lespedeza-nodulating rhizobia were not specific to the host species, but specific to their geographic origins. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. GenBank sequence accession numbers: The GenBank accession numbers were EF61095 through EF061114 and EF051240 for acquired 16S rDNA sequences; EF153395 through EF153402 for nifH sequences; and EF153403 through EF153410 for nodC sequences.  相似文献   

20.
Six Rhizobium meliloti mutants were isolated after Tn5-mediated mutagenesis as resistant to inhibition by a mixture of amino acids (serine, methionine, glycine and leucine). All were defective in adenylate cyclase activity and failed to form nodules in infected roots of Medicago sativa. Furthermore, like other nodulation mutants, they showed altered motility and increased secretion of exopolysaccharides; addition of cAMP to the growth medium abolished some of these phenotypic defects. The possibility that adenylate cyclase participates in the transduction of signals inducing nodulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号